Nonlinear control theory.

Model
Digital Document
Publisher
Florida Atlantic University
Description
This dissertation concerns the dynamics and control of an autonomous underwater
vehicle (AUV) which uses internal actuators to stabilize its horizontalplane
motion. The demand for high-performance AUVs are growing in the field of
ocean engineering due to increasing activities in ocean exploration and research.
New generations of AUVs are expected to operate in harsh and complex ocean environments.
We propose a hybrid design of an underwater vehicle which uses internal
actuators instead of control surfaces to steer. When operating at low speeds or in
relatively strong ocean currents, the performances of control surfaces will degrade.
Internal actuators work independent of the relative
ows, thus improving the maneuvering
performance of the vehicle.
We develop the mathematical model which describes the motion of an underwater
vehicle in ocean currents from first principles. The equations of motion of a
body-fluid dynamical system in an ideal fluid are derived using both Newton-Euler
and Lagrangian formulations. The viscous effects of a real fluid are considered separately.
We use a REMUS 100 AUV as the research model, and conduct CFD simulations to compute the viscous hydrodynamic coe cients with ANSYS Fluent. The
simulation results show that the horizontal-plane motion of the vehicle is inherently
unstable. The yaw moment exerted by the relative flow is destabilizing.
The open-loop stabilities of the horizontal-plane motion of the vehicle in
both ideal and real fluid are analyzed. In particular, the effects of a roll torque and
a moving mass on the horizontal-plane motion are studied. The results illustrate
that both the position and number of equilibrium points of the dynamical system
are prone to the magnitude of the roll torque and the lateral position of the moving
mass.
We propose the design of using an internal moving mass to stabilize the
horizontal-plane motion of the REMUS 100 AUV. A linear quadratic regulator
(LQR) is designed to take advantage of both the linear momentum and lateral position
of the internal moving mass to stabilize the heading angle of the vehicle. Alternatively,
we introduce a tunnel thruster to the design, and use backstepping
and Lyapunov redesign techniques to derive a nonlinear feedback control law to
achieve autopilot. The coupling e ects between the closed-loop horizontal-plane
and vertical-plane motions are also analyzed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Research on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this dissertation is to identify possible methods to launch and recover a REMUS 100 AUV from a WAM-V 16 USV, thus developing this capability by designing and implementing a launch and recovery system (LARS). To meet this objective, a series of preliminary experiments was first performed to identify two distinct methods to launch and recover the AUV: mobile and semi-stationary. Both methods have been simulated using the Orcaflex software. Subsequently, the necessary control systems to create the mandatory USV autonomy for the purpose of launch and recovery were developed. Specifically, a series of low-level controllers were designed and implemented to enable two autonomous maneuvers on the USV: station-keeping and speed & heading control. In addition, a level of intelligence to autonomously identify the optimal operating conditions within the vehicles' working environment, was derived and integrated on the USV. Lastly, a LARS was designed and implemented on the vehicles to perform the operation following the proposed methodology. The LARS and all subsystems developed for this research were extensively tested through sea-trials. The methodology for launch and recovery, the design of the LARS and the experimental findings are reported in this document.