Human information processing.

Model
Digital Document
Publisher
Florida Atlantic University
Description
Kersten, Earles, and Berger (2015) reported a distinction between two kinds of motion representations. Extrinsic motions involve the path of a person or object, with respect to an external frame of reference. Intrinsic motions involve the manner in which the various parts of a person or object move. They found that intrinsic motions are encoded and remembered with the corresponding actor performing the motions in a unitized memory representation. Extrinsic motions are encoded as separate memory representations, making them more difficult to accurately associate with the correct actor. In the proposed experiment, I will examine the generality of this distinction in motion representation, and investigate whether the unitization of intrinsic motion with its corresponding actor occurs during reading comprehension tasks.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A self-adaptive software is developed to predict the stock market. It’s Stock
Prediction Engine functions autonomously when its skill-set suffices to achieve its goal,
and it includes human-in-the-loop when it recognizes conditions benefiting from more
complex, expert human intervention. Key to the system is a module that decides of
human participation. It works by monitoring three mental states unobtrusively and in real
time with Electroencephalography (EEG). The mental states are drawn from the
Opportunity-Willingness-Capability (OWC) model. This research demonstrates that the
three mental states are predictive of whether the Human Computer Interaction System
functions better autonomously (human with low scores on opportunity and/or
willingness, capability) or with the human-in-the-loop, with willingness carrying the
largest predictive power. This transdisciplinary software engineering research
exemplifies the next step of self-adaptive systems in which human and computer benefit from optimized autonomous and cooperative interactions, and in which neural inputs
allow for unobtrusive pre-interactions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Establishing appropriate animal models for the study of human memory is
paramount to the development of memory disorder treatments. Damage to the
hippocampus, a medial temporal lobe brain structure, has been implicated in the memory
loss associated with Alzheimer’s disease and other dementias. In humans, the role of the
hippocampus is largely defined; yet, its role in rodents is much less clear due to
conflicting findings. To investigate these discrepancies, an extensive review of the rodent
literature was conducted, with a focus on studies that used the Novel Object Recognition
(NOR) paradigm for testing. The total amount of time the objects were explored during
training and the delay imposed between training and testing seemed to determine
hippocampal recruitment in rodents. Male C57BL/6J mice were implanted with bilateral
dorsal CA1 guide cannulae to allow for the inactivation of the hippocampus at discrete
time points in the task. The results suggest that the rodent hippocampus is crucial to the
encoding, consolidation and retrieval of object memory. Next, it was determined that there is a delay-dependent involvement of the hippocampus in object memory, implying
that other structures may be supporting the memory prior to the recruitment of
hippocampus. In addition, when the context memory and object memory could be further
dissociated, by altering the task design, the results imply a necessary role for the
hippocampus in the object memory, irrespective of context. Also, making the task more
perceptually demanding, by requiring the mice to perform a two-dimensional to three-dimensional
association between stimuli, engaged the hippocampus. Then, in the
traditional NOR task, long and short training exploration times were imposed to
determine brain region activity for weak and strong object memory. The inactivation and
immunohistochemistry findings imply weak object memory is perirhinal cortex
dependent, while strong object memory is hippocampal-dependent. Taken together, the
findings suggest that mice, like humans, process object memory on a continuum from
weak to strong, recruiting the hippocampus conditionally for strong familiarity.
Confirming this functional similarity between the rodent and human object memory
systems could be beneficial for future studies investigating memory disorders.