Proteolytic enzymes

Model
Digital Document
Publisher
Florida Atlantic University
Description
Alterations in activities of one family of proteases, the metzincins have been implicated
in an array of physiological and pathological processes. In the present study, metzincin
inhibitors were developed by utilizing topologically constrained peptides and
pseudopeptides. The endothelin-family framework was used to develop a disulfideconstrained
topology. This framework was chosen due to its three-dimensional similarity
with a family of endogenous metzincin inhibitors, the tissue inhibitors of
metalloproteases (TIMPs). The collagenous triple-helix was chosen as a second
framework, because only a subset of proteolytic enzymes have the capacity to bind and
hydrolyze a triple-helix. Both templates were successfully modified to generate an array
of inhibitors. These inhibitors displayed subnanomolar to micromolar apparent Ki values,
while being moderately selective metzincin inhibitors. In both cases the threedimensional
structure was determined to be important for activity. This work encourages
the further development of both frameworks as metzincin inhibitors.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Melanoma starts on the surface of the skin where it is easily seen. It is curable
when detected early, but can be fatal if allowed to progress and spread. Melanoma can
spread downwards through the skin, ultimately reaching the blood and lymphatic vessels,
and metastasize. Thus, one goal is to detect melanoma early before it metastasizes. A high
throughput proteomics approach has been applied to better understand the processes that
underlie tumor formation and progression. Three studies were pursued: I) proteome
comparison of the matched primary WM-115 and metastatic WM-266-4 melanoma cell
lines; II) proteome comparison between the matched melanoma Hs 895.T and fibroblast
Hs 895Sk cell lines; and III) comprehensive proteome cataloging of two metastatic
melanoma cell lines Hs 895.T and SK-MEL-2. From these studies we identified proteins
that are involved in cellular functions such as metabolism, signal transduction, and DNA
binding, as well as structural and heat shock proteins. We hypothesized about a possible
oxidative stress pathway involved in melanoma progression, initiated the creation of a
melanoma proteome database, and also identified some proteins not previously studied in melanoma (such as cyclophilin A, ADP-ribosylation factor-1, 14-3-3 zeta ATP syntase, Rho
GTPase, Plastin T, galectin 1 and 3, annex in II, enolase 1, cofilin, RhoGDI, Rap 1,
G6PG, GAPDH, TKT, HK, and nuclear chloride channel protein). These results mark a
step forward in the development of a metstatic melanoma protein database, the
understanding of the chemical pathways that are involved in metastatic melanoma
development, and identification of possible new targets for inhibitor development.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Tissue Inhibitors of Metalloproteinases (TIMPs) are produced by a wide variety of cell types. Similar to matrixins, the expression of TIMPs in the tissue is also controlled during tissue remodeling and physiological conditions to maintain a balance in the metabolism of extracellular matrix. Disruption of this balance can result in diseases associated with uncontrolled turnover of matrix, such as arthritis, cancer, and cardiovascular disease. Some of the biological processes TIMPs participate in include: regulation of cell morphology and organ morphogenesis, inhibition of angiogenesis, steroidogenesis, and tissue remodeling. One major function of TIMPs is inhibition of Matrix Metaloproteinase (MMPs). This project used bioinformatic techniques to identify two Caenorhabditis elegans TIMP cDNA cloned by BLAST searching of EST database. These TIMP cDNA were amplified, cloned and expressed, proteins were purified. Kinetic studies were carried out to evaluate the inhibitory activities against various MMPs and TACE. This research project will provide some insight on the function of C. elegans TIMPs.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The metastatic process involves tumor cell adhesion to basement membrane components, such as type IV collagen. A specific mitogen activated protein kinase cascade is activated by cell adhesion to type IV collagen. This activation causes the expression of proteolytic enzymes. These enzymes will then participate in compromising extracellular matrix components and enhance cell movement through them. To better understand tumor invasion of type IV collagen, we have constructed triple-helical peptide (THP) ligands for melanoma cell receptors, and used these ligands to determine if receptors such as CD44/CSPG and the alpha2beta1 integrin have unique matrix metalloproteinase (MMP) signaling pathways affected by the tyrosine kinase inhibitor genistein. MMP protein expression profiles were evaluated using the alpha2beta1 integrin ligand, and CD44/CSPG ligand. Results were indicative of specific activation sequences that tumor cells undergo upon binding to select regions of type IV collagen.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The 23 matrix metalloproteinases (MMPs) in humans catalyze the turnover of all protein components of the extracellular matrix (ECM) and have important roles in tissue remodeling, wound healing, embryo implantation, cell migration and shedding of cell surface proteins. Excess MMP activities are associated with many diseases including arthritis, heart disease and cancer. The activities of MMPs are regulated by a family of four protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), that are endogenous inhibitors of matrix metalloproteinases (MMPs), ADAMs (A Disintegrin And Metalloproteinase) and ADAMTS (disintegrin-metalloproteinase with thrombospmdin motifs) .... The balance between TIMPs and active metzinicins is very important and imbalances are linked to human diseases such as arthritis, cancer, and atherosclerosis. The engineering of TIMPs to produce specific inhibitors of individual MPs could provide new therapeutic principles for disease treatment, but this requires a detailed understanding of the biophysical and structural basis of the interactions of TIMPs and MMPs and ADAMs.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Huntington's disease (HD) is caused by an expanded plyglutamine repeat in the huntingtin protein. In this study, I focused on the effect of the mutant huntingtin protein (mhtt) on the subcellular localization of glutamic acid decarboxylase (GAD), the enzyme responsible for synthesizing gama-aminobutyric acid (GABA). Subcellular distribution of GAD65 is significantly altered in two neuronal cell lines that express either the N-terminus or full length mhtt. GAD65 is predominantly associated with the Golgi membrane in cells expressing normal huntingtin (Htt). However, it diffuses in the cytosol of cells expressing mhtt. Palmitoylation of GAD65 is required for GAD65 trafficking, and I demonstrated the palmitoylation of GAD65 is reduced in the HD model. Overexpression of huntingtin-interacting protein 14 (HIP14), the enzyme that palmitoylates GAD65, rescues GAD65 palmitoylation and vesicle-associated trafficking. This data suggests that impairment of GAD65 palmitoylation by mhtt may alter its localization and lead to altered inhibitory neurotransmission in HD.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Brain glutamic acid decarboxylase 65 (GAD65) catalyzes the rate-limiting step in the biosynthesis of the major inhibitory neurotransmitter-amino butyric acid (GABA) from the substrate L-glutamic acid. Severe lapse in GABA neurotransmission is one of the etiologies documented in the manifestation of certain neurodegenerative diseases such as epilepsy, Parkinson's disease, Huntington's disease etc. Because GAD65 synthesizes GABA, any modulation of GAD65, therefore, has direct implications on the quanta of GABA released at the synapse. Hence, the major objective of this study was to focus on the regulation of GAD65, with special emphasis on investigating the proteolytic cleavage of fGAD65. Previously, we have shown in vitro that GAD65 was cleaved to form its truncated form (tGAD65), which was more active than the full length form (fGAD65). The enzyme responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient physiologica l stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is poorly understood. In this study, we examined the cleavage of fGAD65 under a range of conditions encompassing both physiological and pathological aspects, including rats under ischemia/reperfusion insult, rat brain synaptosomes or primary neuronal cultures subjected to excitotoxic stimulation with KCl. It was observed that the formation of tGAD65 progressively increased with increasing stimulus concentration. More importantly, cleavage of synaptic vesicle (SV) - associated fGAD65 by calpain was demonstrated, and the resulting tGAD65 harboring the active site of the enzyme was detached from the SVs. Vesicular uptake of the newly synthesized GABA into the SVs was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65 in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate indica
Model
Digital Document
Publisher
Florida Atlantic University
Description
Molecular chaperones guide peptide fold conformation throughout the lifetime of the peptide. One network of chaperone proteins involved in this activity, Heat shock protein 70s (Hsp70s), are well characterized at restoring peptide fold, utilizing J-domain containing protein chaperone cofactors to activate Hsp70 activity. DnaJ (Hsp40) homolog, subfamily C, member 25 (DNAJC25) is a class III transmembrane J-domain containing protein that to date is underrepresented in the literature. Recently, Hejtmancik et al. 2012. (unpublished data) have revealed that missense mutation to DNACJ25 at Pro90Leu (P90L) is strongly correlated with inherited Closed-Angle Glaucoma. Inherited mutations are well characterized for Open-Angle Glaucoma, however, prior to this finding, were unknown for Closed-Angle Glaucoma. In this report, analysis of the in vitro chaperone activity of DNAJC25 w+ and P90L is assessed utilizing an Hsp70 mediated Glucose-6-Phosphate Dehydrogenase refolding system, SWISS-MODEL predictions are performed for the J-domain structure of DNAJC25 w+ and P90L with consequent analysis of DNAJC25 Pro90 conservation relative to other type I, II, and III J-domain containing proteins. DNAJC25 P90L demonstrated decreased chaperone activity in vitro compared to w+ DNAJC25.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal region of TIMP and the C-D B-strand connector which occupy the primed (right side of the active site) and unprimed (left side) regions of the active site. Substitutions for Thr2 of N-TIMP- 1 strongly influence MMP selectivity. In this study we found that Arg and Gly, which generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the NTIMP-1 mutant with AB loop of TIMP-2, it produced a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and MMP-9, respectively. The Gly mutant has a Ki of 2.1 nM for MMP-9 and > 40 uM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily. In collaboration with Dr. Yingnan Zhang at Genentech, we have developed a protocol for the phage display of full-length human TIMP-2 to identify high-affinity selective inhibitors of human MMP-1, a protease that plays a role in cleaving extracellular matrix (ECM) components, connective tissue remodeling during development, angiogenesis, and apoptosis. We have generated a library containing 2x1010 variants of TIMP-2 randomized at residues 2-6 (L1), at residues 34-40 (L2) and 67-70 (L3).