Apoptosis

Model
Digital Document
Publisher
Florida Atlantic University
Description
The function and role of PAK6, serine/threonone kinase, in cancer progressionhas not yet been clearly identified. Several studies reveal that PAK6 may participate in key changes contributing to cancer progression such as cell survival, cell motility, and invasiveness. Basedon the membrane localization of PAK6 in prostate and breast cancer cells,we speculated that PAK6 plays a rolein cancer progression cells by localizing on the membrane and modifying proteins linked to motility and proliferation. We isolated the raft domain of breast cancer cells expressing either wild type (WT), constitutively active (SN), or kinase dead PAK6 (KM) and found that PAK6 is a membrane associated kinase which translocates from the plasma membrane to the cytosol when activated. The downstream effects of PAK6 are unknown ; however, results from cell proliferation assays suggest a growth regulatory mechanism.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Stroke is the third leading cause of mortality in the United States, and so far, no clinical interventions have been proved truly effective in stroke treatment. Stroke my result in hypoxia, glutamate release and oxidative stress, etc. The purpose of this dissertation study is to evaluate the neuroprotective effects of four drugs (taurine, G-CSF sulindac and DETC-MeSO) on PC12 cell line or primary cortical neuronal cell culture, and to understand the protective mechanisms underlying in three stroke-related models : hypoxia, excessive glutamtate and oxidative stress. In the first part of this dissertation, we studied the neuroprotection of taurine against oxidative stress induced by H2O2 in PC12 cells. Our results show that extracellular taurine exerts a neuroprotective function by restoring the expression of Bcl-2 and downregulation of the three Endoplasmic Reticulum (ER) stress markers : GRP78, Bim and CHOP/GADD153, suggesting that ER stress can be provoked by oxidative stress and can be suppressed by taurine. In the second part, glutamate excitotoxicity-induced ER stress was studied with dose and time as variables in primary cortical neurons. The results demonstrate that glutamate excitotoxicity leads to the activation of three ER stress pathways (PERK, ATF6 and IRE1) by initiating PERK first, ATF6 second and IRE1 pathway last. The third part of this dissertation studied the robust and beneficial protection of taurine in cortical neurons under hypoxia/reoxygenation or glutamate toxicity condition. We found that taurine suppresses the up-regulation of GRP778, Bim, caspase-12 and GADD153/CHOP induced by excessive glutamate or hypoxia/reoxygenation, suggesting that taurine may exert a protective function against hypoxia/regeneration by reducing the ER stress.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Effect of Sulindac was studied on an animal model of ischemic stroke. Sulindac, a non steroid anti inflammatory drug (NSAID) could protect cell death due to hypoxia/reoxygenation. This drug was given 2 days before and 24 hrs after ischemia until animals were sacrificed on 3rd or 11th day. Infarct size was measured for these animals. Sulindac induced Hsp 27 in ischemic penumbra and core on Day 3 & 11 with uncoated nylon suture which shows its cell-survival and anti-apoptotic activity. Also, it increased expression of cell survival markers such as Akt, Bcl2 & Grp 78 in ischemic penumbra and core. With silicon suture it reduced expression of Hsp 27 in ischemic penumbra and core, alleviating cell stress and having pro-survival and anti-stress effects. In conclusion sulindac may have excellent potential as neuro protective agent against oxidative stress in cerebral ischemia.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal region of TIMP and the C-D B-strand connector which occupy the primed (right side of the active site) and unprimed (left side) regions of the active site. Substitutions for Thr2 of N-TIMP- 1 strongly influence MMP selectivity. In this study we found that Arg and Gly, which generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the NTIMP-1 mutant with AB loop of TIMP-2, it produced a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and MMP-9, respectively. The Gly mutant has a Ki of 2.1 nM for MMP-9 and > 40 uM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily. In collaboration with Dr. Yingnan Zhang at Genentech, we have developed a protocol for the phage display of full-length human TIMP-2 to identify high-affinity selective inhibitors of human MMP-1, a protease that plays a role in cleaving extracellular matrix (ECM) components, connective tissue remodeling during development, angiogenesis, and apoptosis. We have generated a library containing 2x1010 variants of TIMP-2 randomized at residues 2-6 (L1), at residues 34-40 (L2) and 67-70 (L3).
Model
Digital Document
Publisher
Florida Atlantic University
Description
Prostate cancer is the most common form of non-skin cancer and the second leading cause of cancer deaths within the United States. The five year survival rate has increased from 69% to 99% over the last 25 years for the local and regional disease, but has remained fairly low (approximately 34%) for the advanced disease. Therefore, current research is aimed at finding complementary or alternative treatments that will specifically target components of the signal transduction, cell-cycle and apoptosis pathways to induce cell death, with little or no toxic side effects to the patient. In this study we investigated the effect of genistein on expression levels of genes involved in these pathways. Genistein is a (4 , 5 , 7-trihydroxyisoflavone) is a major isoflavone constituent of soy that has been shown to inhibit growth proliferation and induce apoptosis in cancer cells. The mechanism of genistein-induced cell death and potential molecular targets for genistein in LNCaP prostate cancer c ells was investigated using several techniques. The chemosensitivity of genistein towards the prostate cancer cells was investigated using the ATP and MTS assays and apoptosis induction was determined using apoptosis and caspase assays. Several molecular targets were also identified using cDNA microarray and RT-PCR analysis. Our results revealed that genistein induces cell death in a time and dose-dependent manner and regulates expression levels of several genes involved in carcinogenesis and immunogenicity. Several cell cycle genes were down-regulated, including the mitotic kinesins, cyclins and cyclin dependent kinases, indicating that genistein is able to halt cell cycle progression through the regulation of genes involved in this process.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Mammalian neurons exhibit extreme sensitivity to oxygen deprivation and undergo rapid and irreversible degeneration when oxygen supply is curtailed. Though several neuroprotective pathways are activated during oxygen deprivation, their analyses are masked by the complex series of pathological events which are triggered simultaneously. Such events can be analyzed in the anoxia tolerant fresh water turtle, which can inherently survive the conditions of oxygen deprivation and post-anoxic reoxygenation without brain damage. It is likely in such a model that modulation of a particular molecular pathway is adaptive rather than pathological. The major objective behind this study was to analyze the intracellular signaling pathways mediating the protective effects of adenosine, a potential neuromodulator, and its effect on cell survival by influencing the key prosurvival proteins that prevent apoptosis. In vivo and in vitro studies have shown that adenosine acts as a neuroprotective metabolite and its action can be duplicated or abrogated using specific agonist and antagonists. Stimulating the adenosine receptors using selective A1 receptor agonist N6-cyclopentyladenosine (CPA) activated the presumed prosurvival ERK and P13-K/AKT cascade promoting cell survival, and suppression of the receptor using the selective antagonist DPCPX (8- cyclopentyl-1,3-dipropylxanthine) activated the prodeath JNK and P38 pathways. The complex regulation of the MAPK's/AKT signaling cascades was also analyzed using their specific inhibitors. The inhibiton of the ERK and AKT pathway increased cell death, indicating a prosurvival role, whereas inhibiton of the JNK and p38 pathway increased cell survival in this model. In vitro studies have also shown a high Bcl-2/BAX ratio during anoxia and reoxygenation, indicating a strong resistance to cell death via apoptosis.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Cancer is the second leading cause of death in the western world. In order to treat various types of cancer, platinum-based drugs are most widely employed as metal-containing chemotherapeutic agents. However, their clinical usage is hindered by toxic side effects, and by the emergence of drug resistance. Our focus was to replace platinum with less toxic metal like tin which can give better alternatives for cancer treatment. The major aim of our study was to synthesize novel organotin polyethers (Sn-O) which can be used to combat cancer. Preliminary results from our laboratory using organotin polyethers, that were synthesized by varying the structure of diols showed growth inhibition in Balb-3T3 cells. This study directly led us to hypothesize the two structural windows, first by changing the distance between diol and second, by presence of unsaturation in diols, the biological activity of organotin polyethers (Sn-O) can be enhanced significantly. Different series of polymeric compounds were synthesized based upon these two structural windows and the formation of products was validated using standard techniques like infrared spectroscopy (IR), light scattering photometer, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and nuclear magnetic resonance (NMR). The synthesized polymers arrested the growth of cancer cell lines including bone, prostate, colon, breast, pancreas and lung cancer derived cell lines in vitro. In number of instances where chemotherapeutic index values of two and greater were found that these polymers are significantly more active against cancer cells than non-cancerous cells in culture.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Microarray expression data which contains the expression levels of a large number of simultaneously observed genes have been used in many scientific research and clinical studies. Due to its high dimensionalities, selecting a small number of genes has shown to be beneficial for many tasks such as building prediction models from the microarray expression data or gene regulatory network discovery. Traditional gene selection methods, however, fail to take the class distribution into the selection process. In biomedical science, it is very common to have microarray expression data which is severely biased with one class of examples (e.g., diseased samples) significantly less than other classes (e.g., normal samples). These sample sets with biased distributions require special attention from researchers for identification of genes responsible for a particular disease. In this thesis, we propose three filtering techniques, Higher Weight ReliefF, ReliefF with Differential Minority Repeat and ReliefF with Balanced Minority Repeat to identify genes responsible for fatal diseases from biased microarray expression data. Our solutions are evaluated on five well-known microarray datasets, Colon, Central Nervous System, DLBCL Tumor, Lymphoma and ECML Pancreas. Experimental comparisons with the traditional ReliefF filtering method demonstrate the effectiveness of the proposed methods in selecting informative genes from microarray expression data with biased sample distributions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Tissue inhibitors of metalloproteinases (TIMPs) comprise a family of four proteins in humans that modulate the turnover of the extracellular matrix by regulating the activities of endopeptidases that catalyze its degradation, especially the matrix metalloproteinases (MMP). In general, the four TIMPs are broad-spectrum tight binding inhibitors of MMPs with individual differences in specificity. In this study, we attempted to understand the basis of such variation by using membrane type-1 MMP (MT1-MMP) as a model, since it is inefficiently inhibited by TIMP-1 in contrast with the other TIMPs. We designed and engineered mutations in the N-domain of TIMP-1, based on current knowledge of TIMP interactions. By measuring inhibition levels of each mutant against several MMPs, including MT1-MMP, we were able to obtain a triple mutant with an vii improved affinity for MT1-MMP.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Heart disease including ischemic heart disease is the highest contributor to death and morbidity in the western world. The studies presented were conducted to determine possible pathways of protection of the heart against ischemia/reperfusion. We employed adenovirus mediated over-expression of Methionine sulfoxide reductase A (MsrA) in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation. Cells transfected with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation exhibited a 45% decrease in apoptosis as compared to controls. Likewise total cell death as determined by levels of Lactate Dehydrogenase (LDH) release was dramatically decreased by MsrA overexpression. The initial hypothesis that led to our testing sulindac was based on the fact that the S epimer of sulindac was a substrate for MsrA and that this compound might function as a catalytic anti-oxidant based on a reaction cycle that involved reductio n to sulindac sulfide followed by oxidation back to sulindac. To test this we examined the protective effect of sulindac in hypoxia re-oxygenation in both cardiac myocytes in culture and using a Langendorff model of myocardial ischemia. Using this model of myocardial ischemia we showed that pre-incubation of hearts with sulindac, or the S and R epimers of sulindac resulted in protection against cell death. We present several lines of evidence that the protective effect of sulindac is not dependent on the Msr enzyme system nor does it involve the well established role of sulindac as a Cyclooxygenase (COX) inhibitor. Numerous signaling pathways have been implicated in myocardial protective mechanisms, many of which require fluctuations in ROS levels as initiators or mediators.