Composite materials

Model
Digital Document
Publisher
Florida Atlantic University
Description
Experiments were conducted to investigate the degradative effects of ambient and high pressure aqueous environments on unidirectional carbon fiber nylon (AS4/nylon 6) composites. Electrochemical impedance spectroscopy (EIS) was selected for development as a non-destructive method to characterize the degradation phenomena in carbon/nylon composites as result of moisture absorption. EIS data was collected for composites and neat resins as a function of immersion time in ambient and pressurized (6.2 MPa) 3.5% NaCl solution. EIS was also utilized to understand degradative mechanisms when composites were subject to cathodically induced damage. Concurrent EIS and 3-point mechanical loading was also performed on composites to study the changes in the impedance response as a function of loading. A detailed equivalent circuit analysis is also presented in an attempt to elucidate the degradation phenomena in composites. Gravimetric and 3-point mechanical testing data is also presented to study the effect of ambient and pressurized aqueous environments on composites. Scanning electron micrographs of composites are also included to assist in morphological evaluation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Degradation of composite materials in marine environments has been investigated experimentally and with analytical and numerical methods. Basic mechanical properties, fiber volume fraction, moisture absorption curves and transverse tensile properties after water absorption were determined. Transverse fracture surfaces of dry and wet composites were inspected in a scanning electron microscope (SEM). In addition, the edge replication technique was applied. Micromechanical stress analysis of a composite subjected to mechanical, thermal and moisture loading were performed using analytical methods and finite elements. Transverse stiffness and stress levels for interfacial debonding and matrix failure were calculated and correlated with transverse stiffness and strength obtained experimentally.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The codeposition of a smooth and uniform coating of copper and molybdenum was successfully achieved on T-650 carbon fiber. The effect of various plating parameters on the electrodeposition of copper and molybdenum such as plating bath chemistry, current density, and pulse frequency were studied. By adjusting the aforementioned variables, qualitative and quantitative analysis was conducted to evaluate the deposit smoothness, uniformity, and wetting characteristics. Qualitative analysis of the deposits were made using scanning electron microscopy and energy dispersive spectroscopy. Quantitative analysis of the deposit coating was conducted using inductively coupled plasma chemical analysis, dewetting tests, X-ray diffraction, transmission electron microscopy, and auger electron spectroscopy. Based on the results, a plating line was designed and constructed for the continuous deposition of copper and molybdenum onto carbon fiber tows.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The feasibility studies on the use of non-metallic continuous fiber reinforcement in reinforced and prestressed concrete structures are presented herein. Experimental results from studies on relaxation, bond and transfer length of Carbon Fiber Composite Cables (CFCC) are presented followed by results of flexural load tests on concrete beams reinforced and prestressed with CFCC. Durability of the CFCC is another prime concern, and hence part of the study also focuses on establishing the durability of the CFCC exposed to aggressive environments like alkali solution and sea water. The basic mechanics that govern the structural behavior of the beams, provide important insight into the potential that CFCC has to offer.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This Thesis is concerned with the application of stochastical mixture considerations in the analytical modeling of certain classes of electromagnetic composites. It refers to the elucidation of the electromagnetic properties of such composite materials when used in engineering applications. The analytical studies refer to the extension of the existing stochastical mixture permittivity formulations to characterize magnetic mixture materials as well as chiralic mixture media. In both cases the mixture medium is presumed to consist of a host (receptacle) and dispersed particulates (inclusions). The effects of particulate shape in both chiralic and achiralic systems are also considered. Further, the concept of particulate polarization in deciding the permittivity and/or permeability characteristics of orderly-textured mixture media is addressed so as to determine the electromagnetic properties of such orderly-textured media. Application potentials of the present studies in the design of electromagnetic composites are indicated and the scope for the future research is portrayed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Different methods have been employed to calculate the interlaminar stresses and to study the edge effect in a laminated sandwich specimens under uniaxial tension. However, Finite Element Analysis and Force Balance Method produced stress values which disagreed in both magnitude and sign, a controversy which exists in the case of composite laminates also. Experimental methods, photoelastic coating method and strain gaging, were attempted to obtain the strain distribution on the top surface of a sandwich specimen in three point bending. However, these conventional methods failed to show the sharp strain gradient that exists near the free edge. The Force Balance Method was simplified for sandwich specimens by considering the face laminate as a homogeneous and orthotropic material with averaged properties. Simplified expressions were also obtained for calculating the boundary layer thickness. The boundary layer thickness was found to vary linearly with core thickness for the cases considered.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Delamination growth has been investigated as a potential failure mechanism for filament-wound composite cylinders used for offshore and underwater structures. Analysis and experiments on DCB, ENF, and MMB beam fracture specimens machined from angle-ply laminate panels and filament-wound composite cylinders are presented. Bending analysis of beam fracture specimens machined from flat panels and composite cylinders was derived from first order shear deformation theory and one-dimensional expressions obtained from laminated plate and shell theories. For the DCB specimens, elastic foundation effects were modeled. Experiments on flat, glass/polyester laminate beam specimens considered [0]6, [+/-30]5 and [+/-45] 5 lay-ups with mid-plane delaminations. Experiments on beam specimens machined from composite cylinders were conducted on [+/- q ]6 and [+/- q ]12 lay-ups with mid-surface delaminations where q = 30 degrees, 55 degrees and 85 degrees. For all lay-ups and specimen configurations, beam model predictions of compliance were in good agreement with experimental data over the range of laminate thicknesses, ply angles, and crack lengths examined. Fracture toughness for delamination propagation was examined for flat glass/polyester panels and glass/epoxy cylinders. The initiation value of mode II fracture toughness, GIIc, was much larger than the initiation value of mode I fracture toughness GIc. The initiation value of mixed mode fracture toughness, Gc, increased with decreased ratio GI/GII and increased ply angle q . Debonding of transversely oriented fiber bundles was observed as a major crack arrest and fracture resistance mechanism for the flat, glass/polyester angle-ply laminates. Bridging by interlaced fiber bundles and crack jumping to another interface contributed to crack arrest and limited the growth in the curved, glass/epoxy angle-ply laminates. For all lay-ups, the crack propagated in a non-uniform manner across the width of the specimen as explained by elastic coupling effects in the laminate beams of the cracked region.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This dissertation deals with the determination of buckling loads of composite cylindrical shell structures which involve uncertainty either in geometry, namely thickness variation, or in material properties. Systematic research has been carried out, which evolves from the simple isotropic cases to anisotropic cases. Since the initial geometric imperfection has a dominant role in the reduction of those imperfection-sensitive structures such as cylindrical shells, the combined effect of thickness variation and initial imperfection is also investigated in depth. Both analytic and numerical methods are used to derive the solutions to the problems and asymptotic formulas relating the buckling load to the geometric (thickness variation and/or initial imperfection) parameter are established. It is shown that the axisymmetric thickness variation has the most detrimental effect on the buckling load when the modal number of thickness variation is twice as much as that of the classical buckling mode. For the composite shells with uncertainty in material properties, the convex modelling is employed to evaluate the variability of buckling load. Based on the experimental data for the elastic moduli of the composite laminates, the upper and lower bounds of the buckling load are derived, which are numerically substantiated by the results from nonlinear programming. These bounds will be useful in practice and can provide engineers with a better view of the real load-carrying capacity of the composite structure. Finally, the elastic modulus is modeled as a function of coordinates to complete the study on variability of material property so that the result can be obtained to account for the situation where the elastic modulus is different from one place to another in the structure.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This research addresses a specific class of electromagnetic problems concerning the radiation and scattering of high frequency electromagnetic waves at the surfaces of composite materials. With the advent of need-based developments in electromagnetic material technology, a research niche has stemmed to analyze the interaction of electromagnetic energy with different versions of composite materials used mostly as surface materials such as in radar-stealth applications. Mixture-dielectrics, mixture magnetic materials, textured electromagnetic composites with matrix layers of lossy dielectric/magnetic materials, chiralic media, active surface materials etc. are a few emerging candidates of viable composites being considered in the state-of-the-art engineering electromagnetics. Specific to these materials, the analyses pertaining to electromagnetic radiation and scattering problems require a unique, approach vis-a-vis the heterogeneous properties of the composite material surfaces involved. Presently, the proximity of such surfaces is characterized and duly accounted for, by a mutual immittance formulation based on the Monteath's field compensation theorem. Using the relevant theoretical considerations, electromagnetic plane wave and/or focused beam radiation due to an aperture, conducting patch on flat and curved surfaces and scattering by an object coated with a composite material are elucidated. Also, an experimental method of evaluating the surface immittance is indicated. Theoretical computations are validated by comparing the results with those obtained via other methods. Some experimental results are furnished in support of the theoretical approaches presented.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis describes a methodology for mechanical fault detection and diagnostics in an ocean turbine using vibration analysis and modeling. This methodology relies on the use of advanced methods for machine vibration analysis and health monitoring. Because of some issues encountered with traditional methods such as Fourier analysis for non stationary rotating machines, the use of more advanced methods such as Time-Frequency Analysis is required. The thesis also includes the development of two LabVIEW models. The first model combines the advanced methods for on-line condition monitoring. The second model performs the modal analysis to find the resonance frequencies of the subsystems of the turbine. The dynamic modeling of the turbine using Finite Element Analysis is used to estimate the baseline of vibration signals in sensors locations under normal operating conditions of the turbine. All this information is necessary to perform the vibration condition monitoring of the turbine.