Model
Digital Document
Publisher
Florida Atlantic University
Description
In Drosophila melanogaster, the GFS is synaptically coupled to the
Tergotrochanteral motoneurons; these neurons form a signaling pathway from the brain to
the jump muscles (Thomas and Wyman, 1983). Part of this signaling is done through gap
junctions, and placement of these gap junctions was partially shown to be regulated by the
binding of Netrin, a class of guidance molecule (Orr et al., 2014). In the present study we
investigate the role of Netrin's receptor Frazzled in the placement of gap junctions in
Drosophila at: 1) Presynaptic neurons (Giant Fibers [GF]), 2) Postsynaptic neurons
(Tergotrochanteral motoneurons [TTMn]), and 3) Presynaptic + Postsynaptic neurons
simultaneously. Effects of Frazzled were tested using Frazzled RNAi and a combination
of electrophysiological recordings and imaging of the GF-TTMn synapse. The results from
this study show that presynaptic and postsynaptic knockdown of Frazzled delayed
muscular responses and altered the anatomy of both the GF's and TTMn's.
Tergotrochanteral motoneurons; these neurons form a signaling pathway from the brain to
the jump muscles (Thomas and Wyman, 1983). Part of this signaling is done through gap
junctions, and placement of these gap junctions was partially shown to be regulated by the
binding of Netrin, a class of guidance molecule (Orr et al., 2014). In the present study we
investigate the role of Netrin's receptor Frazzled in the placement of gap junctions in
Drosophila at: 1) Presynaptic neurons (Giant Fibers [GF]), 2) Postsynaptic neurons
(Tergotrochanteral motoneurons [TTMn]), and 3) Presynaptic + Postsynaptic neurons
simultaneously. Effects of Frazzled were tested using Frazzled RNAi and a combination
of electrophysiological recordings and imaging of the GF-TTMn synapse. The results from
this study show that presynaptic and postsynaptic knockdown of Frazzled delayed
muscular responses and altered the anatomy of both the GF's and TTMn's.
Member of