Sjèogren's syndrome

Model
Digital Document
Publisher
Florida Atlantic University
Description
Sjèogren's Syndrome (SS) is a chronic, inflammatory autoimmune disease affecting mostly the exocrine cells of lacrimal and salivary glands, leading to diminished secretory function and resulting in keratoconjunctivitis sicca (dry eye disease) and/or stomatitis sicca (dry mouth disease). Despite several decades of studies focusing on autoimmune diseases and dry eye diseases, the exact etiology and mechanisms of SS remain unknown. Besides the fact that SS is often unreported, unrecognized and untreated, today's therapies rely exclusively on treating the symptoms after disease progression; there exists neither prevention therapy nor cure for SS. In addition, SS has been diagnosed predominantly in post-menopausal women with the female to male ratio reaching 9:1, suggesting a role of ovarian sex hormones in the pathogenesis of SS. However, not all postmenopausal women develop SS, indicating the contribution of other factors such as a genetic background to the onset of SS. In the present study, ovariectomized (OVX) NOD.B10.H2b mice provide a model of menopause with a genetic predisposition to SS, as compared to non-predisposed C57BL/10 mice. Both strands of mice were either sham operated, OVX, OVX and treated with 17(Sb (Bestradiol (E2), or OVX and treated with dihydrotestosterone (DHT). Lacrimal glands were collected 3, 7, 21, and 30 days after surgery and processed for RNA analysis by rt-qPCR and protein assays by ELISA to evaluate cytokine expression and concentrations of IL- 1\U+fffd\, TNF-a, IFN-(Sd(B, IL-10, and IL-4 on a timeline. Overall, our results showed a significant increase in IL-1\U+fffd\ TNF-a, IL-10, and IL-4 expression and levels in the lacrimal glands of OVX NOD.B10.H2b mice as compared to sham operated animals, and treatment with E2 or DHT at time of OVX prevented the increase in cytokine expression and levels.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sjèogren's syndrome (S) is a chronic autoimmune disease characterized by ocular and oral dryness and primarily affects post menopausal women. In the present study we investigated the time course of lymphocytic infiltration, apoptosis, caspase-3 activity and different cytokines levels in the lacrimal glands of both genetically predisposed and control mice to elucidate immunopathological mechanism leading to dry eye. The results of our experiments showed that ovariectomy accelerated pathological findings of SS by increasing lympocytic infiltration, cytokine production, lacrimal gland cell death and cleaved caspase-3 activity, and these effects were more pronounced and persistent in the genetically predisposed mouse model of SS. In addition, we observed that lymphocytic infiltration occurred earlier compared to apoptosis which may perpetuate immune mediated destruction of lacrimal epithelial cells. Furthermore, treatment with physioloigical doses of 17-B Estradiol (E2) or DIhydrotestosterone (DHT) prevented all these pathological events observed after ovariectomy.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sjogren's Syndrome (SS) is characterized by lymphocytic infiltration, destruction and dysfunction of the lacrimal and salivary glands and the presence of serum autoantibodies. Although, approximately 0.5% of the population suffers from SS, there is a female predominance of 9:1 compared with males. Most women with SS are postmenopausal; however, not all women who are post-menopausal develop SS. Therefore, we postulate that a decrease in the circulating levels of hormones creates an environment favorable to the development of SS in a predisposed genetic background. In order to carry out our studies, we used the NOD.B10.H2b mouse model of SS, and ovariectomized (OVX) them as a model for the post-menopausal condition. We removed the lacrimal glands and measured the gene expression and protein levels of several cytokines and chemokines known to be upregulated in patients with SS such as : lL-1B, IL-10, INF-y, TNFa, CCL9 and CXCL13.