Model
Digital Document
Publisher
Florida Atlantic University
Description
An adversary armed with a quantum computer has algorithms[66, 33, 34] at their disposal, which are capable of breaking our current methods of encryption. Even with the birth of post-quantum cryptography[52, 62, 61], some of best cryptanalytic algorithms are still quantum [45, 8]. This thesis contains several experiments on the efficacy of lattice reduction algorithms, BKZ and LLL. In particular, the difficulty of solving Learning With Errors is assessed by reducing the problem to an instance of the Unique Shortest Vector Problem. The results are used to predict the behavior these algorithms may have on actual cryptographic schemes with security based on hard lattice problems. Lattice reduction algorithms require several floating-point operations including multiplication. In this thesis, I consider the resource requirements of a quantum circuit designed to simulate floating-point multiplication with high precision.
Member of