Prestressed concrete construction--Maintenance and repair

Model
Digital Document
Publisher
Florida Atlantic University
Description
This study evaluates the effectiveness of using externally bonded CFRP plates for repairing damaged prestressed concrete structures as an alternative to the metal sleeve splice. Currently the metal sleeve splice is the most often used method for the repair of damaged prestressed concrete bridges. The use of bonded CFRP plates could be a viable alternative to the use of steel in this type of repair because of their high strength and stiffness, resistance to corrosion and low weight. The bond strength of CFRP plates bonded to concrete was evaluated by the use of a peel test and correlated by a finite element analysis. The peel test showed that the structural system was not significantly adversely effected by harsh environmental conditions. The results of this study showed that the use of CFRP plates is a feasible alternative to steel in the metal sleeve splice repair with some limiting factors.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This study presents the experimental and theoretical studies on debond of carbon fiber laminates bonded to concrete, which aids in understanding the mechanics of the repaired damaged prestressed concrete girders with externally bonded carbon plates. The bond strength of carbon plate specimens bonded to concrete is determined experimentally by the debond test. The initial crack is introduced in the specimens at one location, namely the plate/adhesive interface. The fracture toughness for debonding is evaluated and expressed as the critical strain energy release rate. A finite element analysis was performed to evaluate the compliance and stress distribution in the debond test specimens.