Finite groups

Model
Digital Document
Publisher
Florida Atlantic University
Description
Every transitive permutation representation of a finite group is the representation of the group in its action on the cosets of a particular subgroup of the group. The group has a certain rank for each of these representations. We first find almost all rank-3 and rank-4 transitive representations of the projective special linear group P SL(2, q) where q = pm and p is an odd prime. We also determine the rank of P SL (2, p) in terms of p on the cosets of particular given subgroups. We then investigate the construction of rank-3 transitive and primitive extensions of a simple group, such that the extension group formed is also simple. In the latter context we present a new, group theoretic construction of the famous Hoffman-Singleton graph as a rank-3 graph.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The concept of valuated groups, simply presented groups, and simultaneous decomposition of an abelian group and a subgroup are discussed. We classify the structure of finite valuated p-groups of order up p^4. With a refinement of a classical theorem on bounded pure subgroups, we also relate the decomposition of a finite valuated p-group to the simultaneous decomposition of a finite abelian p-group and a subgroup.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A methodology is presented to construct an approximate fuzzy-mapping algorithm that maps multiple inputs to single outputs given a finite training set of argument vectors functionally linked to corresponding scalar outputs. Its scope is limited to problems where the features are known in advance, or equivalently, where the expected functional representation is known to depend exclusively on the known selected variables. Programming and simulations to implement the methodology make use of Matlab Fuzzy and Neural toolboxes and a PC application of Prolog, and applications range from approximate representations of the direct kinematics of parallel manipulators to fuzzy controllers.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The minimal logarithmic signature conjecture states that in any finite simple group there are subsets Ai, 1 i s such that the size jAij of each Ai is a prime or 4 and each element of the group has a unique expression as a product Qs i=1 ai of elements ai 2 Ai. Logarithmic signatures have been used in the construction of several cryptographic primitives since the late 1970's [3, 15, 17, 19, 16]. The conjecture is shown to be true for various families of simple groups including cyclic groups, An, PSLn(q) when gcd(n; q 1) is 1, 4 or a prime and several sporadic groups [10, 9, 12, 14, 18]. This dissertation is devoted to proving that the conjecture is true for a large class of simple groups of Lie type called classical groups. The methods developed use the structure of these groups as isometry groups of bilinear or quadratic forms. A large part of the construction is also based on the Bruhat and Levi decompositions of parabolic subgroups of these groups. In this dissertation the conjecture is shown to be true for the following families of simple groups: the projective special linear groups PSLn(q), the projective symplectic groups PSp2n(q) for all n and q a prime power, and the projective orthogonal groups of positive type + 2n(q) for all n and q an even prime power. During the process, the existence of minimal logarithmic signatures (MLS's) is also proven for the linear groups: GLn(q), PGLn(q), SLn(q), the symplectic groups: Sp2n(q) for all n and q a prime power, and for the orthogonal groups of plus type O+ 2n(q) for all n and q an even prime power. The constructions in most of these cases provide cyclic MLS's. Using the relationship between nite groups of Lie type and groups with a split BN-pair, it is also shown that every nite group of Lie type can be expressed as a disjoint union of sets, each of which has an MLS.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A logarithmic signature (LS) for a nite group G is an ordered tuple = [A1;A2; : : : ;An] of subsets Ai of G, such that every element g 2 G can be expressed uniquely as a product g = a1a2 : : : ; an, where ai 2 Ai. Logarithmic signatures were dened by Magliveras in the late 1970's for arbitrary nite groups in the context of cryptography. They were also studied for abelian groups by Hajos in the 1930's. The length of an LS is defined to be `() = Pn i=1 jAij. It can be easily seen that for a group G of order Qk j=1 pj mj , the length of any LS for G satises `() Pk j=1mjpj . An LS for which this lower bound is achieved is called a minimal logarithmic signature (MLS). The MLS conjecture states that every finite simple group has an MLS. If the conjecture is true then every finite group will have an MLS. The conjecture was shown to be true by a number of researchers for a few classes of finite simple groups. However, the problem is still wide open. This dissertation addresses the MLS conjecture for the classical simple groups. In particular, it is shown that MLS's exist for the symplectic groups Sp2n(q), the orthogonal groups O 2n(q0) and the corresponding simple groups PSp2n(q) and 2n(q0) for all n 2 N, prime power q and even prime power q0. The existence of an MLS is also shown for all unitary groups GUn(q) for all odd n and q = 2s under the assumption that an MLS exists for GUn 1(q). The methods used are very general and algorithmic in nature and may be useful for studying all nite simple groups of Lie type and possibly also the sporadic groups. The blocks of logarithmic signatures constructed in this dissertation have cyclic structure and provide a sort of cyclic decomposition for these classical groups.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Benson spaces of higher order are introduced extending the idea of N. Krugljak and M. Milman, A distance between orbits that controls commutator estimates and invertibilty of operators, Advances in Mathematics 182 (2004), 78-123. The concept of Benson shift operators is introduced and a class of spaces equipped with these operators is considered. Commutator theorems of higher order on orbit spaces generated by a single element are proved for this class. It is shown that these results apply to the complex method of interpolation and to the real method of interpolation for the case q=1. Two new characterizations are presented of the domain space of the "derivation" operator in the context of orbital methods. Comparisons to the work of others are made, especially the unifying paper of M. Cwikel, N. Kalton, M. Milman and R. Rochberg, A United Theory of Commutator Estimates for a Class of Interpolation Methods, Advances in Mathematics 169 2002, 241-312.