Chemical resistance

Model
Digital Document
Publisher
Florida Atlantic University
Description
Two duplex stainless steels rebars: UNS32304SS and UNS32101SS, were selected to investigate the corrosion initiation and propagation in reinforced concrete specimens. The investigation is divided in two phases with two different methods to accelerate the transport of chlorides through the concrete and initiate corrosion in a short period of time. After corrosion had initiated and propagated for some time; selected specimens were terminated for visual examination. On specimens selected for autopsy, the rebars in the top row showed corrosion to various degrees. Corrosion had propagated to such extent on the terminated specimens that the specimen showed cracks. Stray current might have caused accelerated corrosion on rebars where corrosion had initiated. Based on chloride concentrations measured at the rebar trace, corrosion initiated: on S32101 rebars on average at 7.9 kg/m3, and S32101 rebars on average at 6.0 kg/m3. The findings suggest that S32304 rebars corroded at a slower than S32101.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The aim of this study was to investigate the diffusion of chloride ions into concrete samples that were exposed in scenarios that simulate the splash, tidal, atmospheric, and immersed portions of a marine structure. To study the atmospheric deposition, the project also investigated the relationship between chloride ion deposition on the wet candle and its accumulation into concrete samples. Results from the wet candle experiment indicated that between 2% and 45% of the chlorides deposited per square meter of exposed area could be found within the concrete samples. After 6 months, slag G1a blocks showed the most resistance to chloride penetration in the tidal and splash simulations. After 10 months of exposure, fly ash samples had the slowest rates of diffusion in the tidal simulation while the fly ash + silica fume samples and the slag samples measured similar rates of diffusion within the tidal zone. After 90 days of curing, cylinders composed of 20% fly ash & 8% silica fume measured the highest average resistivity values and were found to be less vulnerable to chloride ion penetration than the 20% fly ash and the 50% slag concrete through rapid migration tests.
Model
Digital Document
Publisher
Florida Atlantic University
Description
With the need to improve corrosion resistance in columns and piles, the innovative idea of Centrally Prestressed Fiber Reinforced Concrete (CPFRC) columns is a promising solution. The first step is to compare if the compressive strength of any mix is affected by the size, geometry, or even the inclusion of polyolefin fibers in a specimen. The results showed that the cylinder size of 4 in. x 8 in., which is the most common size used by the testing labs, has the highest compressive strength. There was no sign on compressive strength improvement with the use of polyolefin fibers, except for reduction in cracking size and concrete spalling. The second step compared the ultimate strength, ductility characteristics and failure mode of CPFRC columns to conventional columns. CPFRC showed adequate axial and flexural resistance, in addition to ductile behavior similar to regular reinforced concrete columns.