Surface waves (Oceanography)

Model
Digital Document
Publisher
Florida Atlantic University
Description
A three-dimensional nonlinear time-dependent boundary-integral algorithm is developed to compute wave forces on an underwater vehicle. The effect of viscosity is neglected and the cases for which the effects could be important are discussed. The present algorithm is however an efficient tool to determine wave forces on a submerged body and can also be integrated into a viscous flow algorithm. A numerical wave tank is constructed for the simulation. A damping layer is introduced to minimize spurious reflection of scattered waves at the open boundary. A sinusoidal progressive pressure patch is used to generate incident waves. Wave forces are determined using four different methods: viz., (1) Froude-Krylov volume integration method, (2) Froude-Krylov surface pressure integration method, (3) Linear diffraction analysis and (4) Nonlinear diffraction analysis for a range of parameters including incident wavelength and wave height. Results are compared to quantify effects of nonlinearity and diffraction effect of the body.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Vertically Ascending Micro-scale Profiler, or VAMP, has been designed, constructed, and tested to be used in conjunction with FAU's Turbulence Package in order to collect vertical turbulence profiles close to the free surface. Unique to VAMP is that it has been specifically designed as an untethered ascending profiler. Examination of turbulence data collected using VAMP shows that the measured shear spectrum and the turbulent kinetic energy dissipation closely matches the Nasmyth Spectrum. Data processing techniques made it possible to filter out motion generated by surface wave action, which allowed VAMP to collect data at depths as shallow as the troughs of the surface waves. VAMP can be launched, deployed several times, and recovered all within a thirty minute time frame by a crew of four.