Manifolds (Mathematics)

Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this dissertation is to estimate the precise asymptotics for the number of geometric equivalence classes of Morse functions on the 2-sphere. Our approach involves utilizing the Lagrange inversion formula, Cauchy’s coefficient formula, and the saddle point method for the asymptotic analysis of contour integrals to analyze the generating function derived by L. Nicolaescu, expressed as the inverse of an elliptic integral. We utilize complex analysis, nonlinear functional analysis in infinite sequence spaces, and interval arithmetic to write all the necessary MATLAB programs that validate our results. This work answers questions posed by Arnold and Nicolaescu, furthering our understanding of the topological properties of Morse functions on two-dimensional manifolds. It also demonstrates the effectiveness of a computer assisted approach for asymptotic analysis.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this work is to study smooth invariant sets using high order approximation schemes. Whenever possible, existence of invariant sets are established using computer-assisted proofs. This provides a new set of tools for mathematically rigorous analysis of the invariant objects. The dissertation focuses on application of these tools to a family of three dimensional dissipative vector fields, derived from the normal form of a cusp-Hopf bifurcation. The vector field displays a Neimark-Sacker bifurcation giving rise to an attracting invariant torus. We examine the torus via parameter continuation from its appearance to its breakdown, scrutinizing its dynamics between these events. We also study the embeddings of the stable/unstable manifolds of the hyperbolic equilibrium solutions over this parameter range. We focus on the role of the invariant manifolds as transport barriers and their participation in global bifurcations. We then study the existence and regularity properties for attracting invariant tori in three dimensional dissipative systems of ordinary differential equations and lay out a constructive method of computer assisted proof which pertains to explicit problems in non-perturbative regimes. We get verifiable lower bounds on the regularity of the attractor in terms of the ratio of the expansion rate on the torus with the contraction rate near the torus. We look at two important cases of rotational and resonant tori. Finally, we study the related problem of approximating two dimensional subcenter manifolds of conservative systems. As an application, we compare two methods for computing the Taylor series expansion of the graph of the subcenter manifold near a saddle-center equilibrium solution of a Hamiltonian system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Despite the high-dimensional nature of the nervous system, humans produce low-dimensional cognitive and behavioral dynamics. How high-dimensional networks with complex connectivity give rise to functionally meaningful dynamics is not well understood. How does a neural network encode function? How can functional dynamics be systematically obtained from networks? There exist few frameworks in the current literature that answer these questions satisfactorily. In this dissertation I propose a general theoretical framework entitled 'Structured Flows on Manifolds' and its underlying mathematical basis. The framework is based on the principles of non-linear dynamical systems and Synergetics and can be used to understand how high-dimensional systems that exhibit multiple time-scale behavior can produce low-dimensional dynamics. Low-dimensional functional dynamics arises as a result of the timescale separation of the systems component's dynamics. The low-dimensional space in which the functi onal dynamics occurs is regarded as a manifold onto which the entire systems dynamics collapses. For the duration of the function the system will stay on the manifold and evolve along the manifold. From a network perspective the manifold is viewed as the product of the interactions of the network nodes. The subsequent flows on the manifold are a result of the asymmetries of network's interactions. A distributed functional architecture based on this perspective is presented. Within this distributed functional architecture, issues related to networks such as flexibility, redundancy and robustness of the network's dynamics are addressed. Flexibility in networks is demonstrated by showing how the same network can produce different types of dynamics as a function of the asymmetrical coupling between nodes. Redundancy can be achieved by systematically creating different networks that exhibit the same dynamics. The framework is also used to systematically probe the effects of lesion
Model
Digital Document
Publisher
Florida Atlantic University
Description
This work was motivated by the well-known question: "Does there exist a nondesarguesian projective plane of prime order?" For a prime p < 11, there is only the pappian plane of order p. Hence, such planes are indeed desarguesian. Thus, it is of interest to examine whether there are non-desarguesian planes of order 11. A suggestion by Ascher Wagner in 1985 was made to Spyros S. Magliveras: "Begin with a non-desarguesian plane of order pk, k > 1, determine all subplanes of order p up to collineations, and check whether one of these is non-desarguesian." In this manuscript we use a group-theoretic methodology to determine the subplane structures of some non-desarguesian planes. In particular, we determine orbit representatives of all proper Q-subplanes both of a Veblen-Wedderburn (VW) plane of order 121 and of the Hughes plane of order 121, under their full collineation groups. In PI, there are 13 orbits of Baer subplanes, all of which are desarguesian, and approximately 3000 orbits of Fano subplanes. In Sigma , there are 8 orbits of Baer subplanes, all of which are desarguesian, 2 orbits of subplanes of order 3, and at most 408; 075 distinct Fano subplanes. In addition to the above results, we also study the subplane structures of some non-desarguesian planes, such as the Hall plane of order 25, the Hughes planes of order 25 and 49, and the Figueora planes of order 27 and 125. A surprising discovery by L. Puccio and M. J. de Resmini was the existence of a plane of order 3 in the Hughes plane of order 25. We generalize this result, showing that there are subplanes of order 3 in the Hughes planes of order q2, where q is a prime power and q 5 (mod 6). Furthermore, we analyze the structure of the full collineation groups of certain Veblen- Wedderburn (VW) planes of orders 25, 49 and 121, and discuss how to recover the planes from their collineation groups.