Magnetic anomalies

Model
Digital Document
Publisher
Florida Atlantic University
Description
The research shows a novel approach for the Magnetic Anomaly Differentiation and Localization Algorithm, which simultaneously localizes multiple magnetic anomalies with weak total field signatures (tens of nT). In particular, it focuses on the case where there are two homogeneous targets with known magnetic moments. This was done by analyzing the magnetic signals and adapting Independent Component Analysis (ICA) and Simulated Annealing (SA) to solve the problem statement. The results show the groundwork for using a combination of fastICA and SA to give localization errors of 3 meters or less per target in simulation and achieved a 58% success rate. Experimental results experienced additional errors due to the effects of magnetic background, unknown magnetic moments, and navigation error. While one target was localized within 3 meters, only the latest experimental run showed the second target approaching the localization specification. This highlighted the need for higher signal-to-noise ratio and equipment with better navigational accuracy. The data analysis was used to provide recommendations on the needed equipment to minimize observed errors and improve algorithm success.