Oceanographic submersibles

Model
Digital Document
Publisher
Florida Atlantic University
Description
As part of a project to study internal waves, FAU plans to utilize an AUV to tow a magnetometer to study electromagnetic signatures from internal waves. This research is focused on the electromagnetic noise issues related to using an AUV to tow the magnetic sensor package. There are active sources of electromagnetic noise caused by an AUV that are present in addition to those induced by the Earth's magnetic field and permanent magnets. To characterize the magnetic noise associated with the AUV magnetometer tow system, the various active source elements were identified, the orientation sensitivity of the sensors being used was determined, and the magnetic anomaly of a similar AUV which may be eventually be used in a magnetic sensing arrangement was measured. The results are used to show the proposed sensing arrangement will likely not achieve the necessary sensitivity to measure subtle internal wave signals.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A magnetometer with a sensitivity of 0.01nT will be towed through the thermocline by a 2.87 meter long, 0.533 meter diameter autonomous underwater vehicle (AUV) to measure the magnetic fluctuations generated by oceanic internal waves. At this point, no research has been found that suggests towed magnetometer measurements have been done using an AUV. Simulations of the AUV, tow cable, and towfish are performed to provide an understanding of the effects of changing different input parameters, such as towing speed (0.5-2m/s), cable length (5-15m), vehicle trajectory (circle and vertical zig zag maneuvers), and current (0.25-1.25m/s). The AUV-cabletowfish system and equations of motion needed for the simulations are described herein. Results show that a 5m tow cable provides better towfish maneuvering than the longer cable lengths. High towfish pitch angle is decreased by decreasing the distance between CG and CB. Surface currents speed of 0.25m/s change the AUV and towfish circle maneuver to a spiral trajectory, while 1.25m/s current speed cause a zig zag trajectory.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The main contribution in this thesis is the design of a robust AUV docking guidance and navigation approach that can guide and home an AUV towards an acoustic source located on an oriented bottom-mounted underwater docking station, under presence of unknown current disturbances and in the absence of any form of onboard velocity sensor. A Complementary Filter and various forms of Kalman Filters were separately formulated to estimate the current and vehicle positions with strategic vehicle manoeuvres. A current compensator uses the estimated current to maintain the desired vehicle course while under current disturbance. Tagaki-Sugeno-Kang Fuzzy Inference System was designed to realize fuzzy docking guidance manoeuvres. Finally, Monte Carlo runs were performed on a designed AUV docking simulator to evaluate the docking robustness against various docking conditions. Simulation results demonstrated robustness in the designed docking guidance and navigation approach.