Remote submersibles

Model
Digital Document
Publisher
Florida Atlantic University
Description
Autonomous underwater vehicle (AUV) missions are generally of a multi-tasked nature, i.e., there are usually several criteria which need to be met concurrently during the course of a mission. An example is the bottom altitude tracking mission proposed by the University of South Florida. They have developed a bottom classification and albedance package (BCAP) which will be used to record data to ground-truth oceanographic satellites. Two criteria needed for this mission are vehicle safety and motion stability of the recording sensors. This thesis will respectively compare the results of three bottom altitude tracking controllers: a linear modification of an existing depth controller, a TSK fuzzy logic controller, and a behavior based decision controller. Aspects analyzed for meeting the criteria were the ability of the auv to avoid collisions with bottom, the ability of the auv to maintain a desired altitude above the sea floor, and the ability of the auv to keep the amount of blur in a picture taken by a downward looking camera under one pixel. From simulation and real world testing, final results indicate the behavioral based decision controller was proven to be the most robust and the only controller tested to be able to handle multi-criteria.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The parameters underlying the design of an Inertial Navigation System (INS) for an Autonomous Underwater Vehicle (AUV) are studied. The strapdown approach for this design is discussed. The performance of a mathematical model of an INS is investigated using a simulation program developed for this purpose. An algorithm is outlined for investigating the accuracy of the computed position of an AUV as compared to the actual or expected position. The results of the simulation program developed using the above mentioned algorithm are presented in a graphical form. The Ring Laser Gyro (RLG), a recent development in the field of inertial sensor technology, is studied with reference to possible use in an INS for an AUV.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The operation of unmanned underwater vehicles requires communications with other nearby vehicles as well as accurate positioning to prevent duplication of work, collisions and other mishaps. This thesis details the integration of an ultra-short baseline positioning system with four transducers arranged as a tetrahedron for use with the FAU Dual Purpose Acoustic Modem. The source position is estimated by processing coherently a series of frequency-hopped pulses to obtain a set of bearings, optimally combined through maximum likelihood estimation of the azimuth and elevation. A simulation has been implemented and experiments have been performed in a calibration tank. Model and experiments confirm that the accuracy of this system improves with the number of pulses and the signal-to-noise ratio. A mean positional error of 5.51% can be obtained with an SNR of 20 dB and a single processed pulse, the error decreases to 2.84% using six processed pulses.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The aim of this thesis is to develop a simulation tool, The 3-D Forward-Look Sonar Simulation Model (3-D-FLSSM), for the 3-D Forward Look Sonar or equivalent that provides insight to the defining characteristics of the sonar system that affect the image quality and the data processing. The simulator includes a representation of the acoustic environment, which incorporates a flat seafloor and spherical target, both of which are assumed to a have small-scale roughness (much less than the acoustic wavelength) associated with them. The backscatter from the target and the seafloor are calculated using the Rayleigh-Rice approximation implementing Kuo's backscattering cross section. The simulator is capable of modeling targets of various shapes and sizes. The 3-D-FLSSM assumes a plane wave approximation and a constant sound velocity throughout the water column. The final product is a simulation tool with a focus on shallow water littoral acoustics, which can be used to define the sonar hardware and processing software necessary to meet various operational requirements.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A numerical model that simulates the operation of a Forward Look Scan Sonar (FLSS) has been developed in this thesis. The model discretizes the sonar-projected signal by a set of rays using a geometrical approach. Bending of the rays due to varying acoustic wave speed is neglected. Simulated raw sonar data are generated, and used as input in the sonar processing algorithms to generate sonar images. Using the model, the influence of, the most critical characteristics of the sonar, including phase variations among the channels, non-homogeneous channel amplitude, and the number of bad channels, on the quality of the sonar image is determined. The results of the model are compared to real data from a low frequency FLS sonar (250 KHz) and a high frequency FLS sonar (600 KHz). There is good matching between the simulation and the operation of the two sonars and the performance was markedly enhanced by using the modeling results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A "hybrid" telerobotic simulation system that is suitable for telemanipulation rehearsal, operator training, human factors study and operator performance evaluation has been developed. The simulator also has the capabilities for eventual upgrade for supervisory control. It is capable of operation in the conventional rate-control, master/slave control and a data driven preprogrammed mode of operation. It has teach/playback capability which allows an operator to generate joint commands for real time teleoperation. For high-level task execution, the operator selects a specific task from a set of menu options and the simulator automatically generates the required joint commands. The simulator was developed using a three dimensional graphic model of an increasingly popular manipulator, TITAN 7F. A closed-form solution for inverse kinematics of the manipulator was found. Degeneracies from inverse kinematics solutions were observed to exist for certain arm configurations, although the manipulator can physically attain such configurations. An approach based on known facts about the manipulator geometry and physical constraints coupled with heuristics was used to generate physically attainable joint solutions from the inverse kinematics. The conditions that cause solution degeneracy were demonstrated to be related to singularity conditions. A novel object interaction detection strategy was implemented for more realistic telemanipulation. The object detection technique was developed based on the use of superellipsoid, which has a convenient inside-outside function for interference testing. The manipulator, with its end-effector and payloads, if any, were modeled as superquadric ellipsoids. A systematic way of determining transformation matrices between the superquadric manipulator links was developed. The interaction detection technique treats both moving and stationary objects in a consistent manner and has proved to be easy to implement and optimize for real-time applications. The feature has been applied for the simulation of pick-and-place operations and collision detection. It is also used to provide visual feedback as a low-cost force reflection and can be interfaced with a bilateral controller for force reflection simulation.