Change-point problems

Model
Digital Document
Publisher
Florida Atlantic University
Description
The change point problem is a problem where a process changes regimes because a parameter changes at a point in time called the change point. The objective of this problem is to estimate the change point and each of the parameters of the stochastic process. In this thesis, we examine the change point problem for two classes of stochastic processes. First, we consider the volatility change point problem for stochastic diffusion processes driven by Brownian motions. Then, we consider the drift change point problem for Ornstein-Uhlenbeck processes driven by _-stable Levy motions. In each problem, we establish the consistency of the estimators, determine asymptotic behavior for the changing parameters, and finally, we perform simulation studies to computationally assess the convergence of parameters.
Model
Digital Document
Publisher
Florida Atlantic University
Description
For a segmented regression system with an unknown change-point over two domains of a predictor, a new empirical likelihood ratio test statistic is proposed to test the null hypothesis of no change. The proposed method is a non-parametric method which releases the assumption of the error distribution. Under the null hypothesis of no change, the proposed test statistic is shown empirically Gumbel distributed with robust location and scale parameters under various parameter settings and error distributions. Under the alternative hypothesis with a change-point, the comparisons with two other methods (Chen's SIC method and Muggeo's SEG method) show that the proposed method performs better when the slope change is small. A power analysis is conducted to illustrate the performance of the test. The proposed method is also applied to analyze two real datasets: the plasma osmolality dataset and the gasoline price dataset.