Model
Digital Document
Publisher
Florida Atlantic University
Description
Chloride ions present in the marine atmosphere contained in marine aerosols is
investigated for a relationship with chloride that accumulated into concrete. Chloride
profiles are conducted on several concrete mixes containing fly ash, silica fume, and slag,
with water to cementitious ratios of 0.35, 0.41, and 0.47. The chloride accumulation in
concrete samples exposed to the environment is investigated with relation to the chloride
deposition from the marine atmosphere measured via the wet candle test. Results indicate
a possible relationship for the total accumulated chloride in the concrete with the
accumulated chloride deposition (wet candle). Over the exposure periods, concrete
specimens with 50% slag addition and 0.47 w/cm had the lowest average rates of chloride
accumulation for deposition under 100 g/m2day. Chloride accumulation was lower in
concrete containing 20% fly ash and 8% silica fume with 0.35 w/cm for chloride deposition
rates over 200 g/m2day.
investigated for a relationship with chloride that accumulated into concrete. Chloride
profiles are conducted on several concrete mixes containing fly ash, silica fume, and slag,
with water to cementitious ratios of 0.35, 0.41, and 0.47. The chloride accumulation in
concrete samples exposed to the environment is investigated with relation to the chloride
deposition from the marine atmosphere measured via the wet candle test. Results indicate
a possible relationship for the total accumulated chloride in the concrete with the
accumulated chloride deposition (wet candle). Over the exposure periods, concrete
specimens with 50% slag addition and 0.47 w/cm had the lowest average rates of chloride
accumulation for deposition under 100 g/m2day. Chloride accumulation was lower in
concrete containing 20% fly ash and 8% silica fume with 0.35 w/cm for chloride deposition
rates over 200 g/m2day.
Member of