PID controllers--Computer simulation

Model
Digital Document
Publisher
Florida Atlantic University
Description
The I.B.M. Electric Drive Robot (E.D.R.) is a six-link manipulator originally controlled by a classical analog P.I.D. controller. Its performance is not satisfactory because of its poor tracking capabilities and a considerable vibration during arm movement. This is the central motivation for designing an adaptive computed torque controller for this system. In order to accomplish this the physical model of the robot is first reparameterized such that it is linear with respect to a set of uncertain parameters. Once this is accomplished the adaptive controller is then formulated. Next methods of computer simulation are developed and employed. These simulation results show the superior performance of the proposed scheme over both a classical computed torque controller and the current P.I.D. controller.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Autonomous Surface Vehicle (ASV) research and development is inspired by the navigating and communicatiog challenges of Autonomous Underwater Vehicles (AUVs). The development objective is to provide real time positioning of and communication with AUVs through the air-sea interface. Despite extensive research on AUVs, the ASV has had limited research. The NAVY's desire to make AUV's defense capabilities realizable adds to the project's appeal. Guidance and control play an integral part in the ASV's success, motivating this thesis work. The overall vehicle dynamics were modeled and numerically simulated for 3 DOF lateral motion. These are development tools for the testing and tuning of PID and adaptive control algorithms. The results show the adaptive controller to be advantageous in terms of tuning, robustness and tracking performances. It uses a single layer neural network that bypasses the need for information about the system's dynamic structure and characteristics and provides portability.