Adaptation (Physiology)

Model
Digital Document
Publisher
Florida Atlantic University
Description
The hermit crab Clibanarius vittatus kills Melongena corona solely to
acquire a better fitting shell. This finding is contrary to previous studies, which
found that hermit crabs of other species cannot kill gastropods or, in most
instances, remove freshly dead gastropods from their shells. This interaction
cannot be classified as predation because Melongena tissue was never
consumed. Clibanarius killed Melongena only when by doing so they could trade
up to a better fitting shell. It cannot be classified as competition because there is
no opportunity for Melongena to gain from the interaction. Therefore the term
“lethal eviction” is hereby proposed for this interaction. The ability to kill a
gastropod to obtain a superior shell gives Clibanarius vittatus an evolutionary
advantage over other hermit crab species. It is not known if the outcome of this
interaction is widespread where both species occur or if it is confined to the
study area.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Changes in activity related oxygen consumption and energy partitioning were measured in leatherback and olive ridley sea turtle hatchlings over their first month after nest emergence. Leatherbacks emerge with about 75--90 KJ of energy in the residual yolk at their disposal for growth and movement. In comparison, the residual yolk energy reserves for the olive ridley are estimated to be much less (45 KJ). In leatherbacks resting specific oxygen consumption rates decreased by 53% over the first post-hatching month (0.0065 ml O2 min-1 g-1--0.0031 ml O2 min-1 g-1), while for ridleys the fall was 32% (0.0038 ml O2 min-1 g-1--0.0026 ml O2 min-1 g-1). Greater differences were seen in aerobic scope. For olive ridleys the factorial aerobic scope doubled over the first month but there was no significant increase in the leatherback's factorial aerobic scope. Leatherback hatchlings gained on average 33% body mass (10 g) over the first week however 70 to 80% of this increase was due to water accumulation. The differences in aerobic scope and energy reserves are related to differences in early life ecological stratagems of these species.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The turtle is a unique model of anoxic survival. The turtle's brain can tolerate total oxygen deprivation for hours to days as well as prevent high levels of mitochondrial-derived free radicals upon re-oxygenation. Because of its ability to prevent elevated free radical generation, the turtle has also become recognized as a model of exceptional longevity. We are employing the turtle model for an investigation into the regulation of a key antioxidant enzyme system - methionine sulfoxide reductases (Msrs), primarily MsrA and MsrB. The Msr system is capable of reversing oxidation of methionines in proteins and Msr subtypes have been implicated in protecting tissues against oxidative stress, as well as, enhancing the longevity of organisms from yeast to mammals. Preliminary data, unpublished results, indicate that MsrA protein and transcripts are elevated by anoxia. A recent study on Caenorhabditis elegans demonstrated that FOXO is involved in activation of the MsrA promoter. Using the turtle MsrA promoter sequence we worked to determine which regions in the promoter are necessary for activation by anoxia. The results of the present study were 1) to prepare a TAT-FOXO3a fusion protein which could penetrate animal cells and 2) to construct a FOXO3a expression vector for transcription studies on MsrA expression.