Soil stabilization

Model
Digital Document
Publisher
Florida Atlantic University
Description
An analytical investigation was conducted to evaluate the geotechnical safety and
stability of MSW landfills constructed with significantly steepened slopes achieved
through geosynthetic reinforcement. The primary motivation for this endeavor was to
propose a new design/construction methodology for innovative expansion of landfill
capacity. A 2-D plane strain linear elastic analysis was performed with ANSYS finite
element software on full-scale MSW landfill structures (with and without geogrids),
having slopes of 1:1, 1:2, and 1:3. Both local and global factors of safety were
determined employing the Mohr-Coulomb failure criteria, and compared with traditional
solutions using the Bishop's Modified Method. It was found that the landfill slopes could
be steepened up to 1:1 using geogrid reinforcement, resulting in higher storage capacity
and consequential environmental and economic benefits.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A numerical investigation was conducted to evaluate the geotechnical safety and slope
stability of Municipal Solid Waste (MSW) landfills, considering the effects of
geosynthetic reinforcements, biodegradation of the waste, and associated changes in
material properties, and extreme wind force simulating hurricane conditions. Three
different landfill slopes, 1:1, 1:2, and 1:3 having the height of 122m and width of 2134m,
were analyzed using Limit Equilibrium Method (SLOPE/W) and Finite Element
Modeling (ANSYS). Techniques developed in this study were used to analyze a case
history involving a geogrid reinforced mixed landfill expansion located in Austria. It was
found that few years after construction of the landfill, there is a significant decrease in the
FS due to biodegradation. Extreme wind loading was also found to cause a substantial
loss in the FS. The geosynthetic reinforcement increased the slope stability and
approximately compensated for the damaging effects of biodegradation and wind
loading.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Effect of cementitious stabilization on the stress-compressibility characteristics of
three different South Florida organic soils were evaluated in this study. The
objectives of the research were to (l) determine if the secondary compression
characteristics of organic soils and peats can be stabilized with (a) cement only,
(b) binary blends of cement/slag (C-S), cement/gypsum (C-G), and cement/cement-kiln-dust (C-CKD) and (c) ternary blend of cement-slag-gypsum in equal proportions; (ll) quantify the effectiveness of cementitious stabilization by evaluating the time-stress-compressibility (t-log σ'v - e) relationship in terms of the Cα / Cc ratio; and (lll) provide some guidelines for selecting optimum dosage of cementitious materials in deep mixing methods when organic soils and peats are encountered. It was concluded that cementitious mixes containing various waste materials is effective in controlling the secondary compression behavior of organic soils, and therefore should be considered in deep mixing methods as a sustainable practice.
Model
Digital Document
Publisher
Florida Atlantic University
Description
An experimental and analytical investigation is presented for two types of geogrids: HDPE (High Density Polyethylene) and PET (Polyester). Sand and limerock were used for the backfill material, which meet the FDOT (Florida Department of Transportation) Material Specifications, with simulation of unsaturated and saturated condition. Eight pullout test boxes were designed and constructed, each with a specially designed stainless steel clamp. The measured strain-time relations for unsaturated and saturated soils for various levels of the pullout force until the peak value (up to 10,000 hours of exposure), and varying distances from the loading end were plotted. The normal and principal stresses in the soil, and the strains along the geogrid were determined from the finite element analysis for the unsaturated soil condition for various pullout force levels. The results were analyzed and a generalized method proposed for practical design using sliding resistance factors.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The dissertation is an experimental and analytical investigation of the long term performance of mechanically stabilized earth (MSE) walls with geosynthetics, with particular focus on rational methods to enable the determination of the applicable factors for use in Load Resistance Factor Design (LRFD). An overview of current issues concerning MSE walls is followed by an extensive literature review addressing MSE walls, pullout strength, creep and creep rupture, durability and degradation, design methodology, analytical prediction, and field evaluation of MSE walls. The experimental tasks comprise: (i) creep and creep rupture, (ii) durability and degradation, (iii) small scale testing of MSE walls with a model prototype ratio of 1:5.5, and (iv) construction of prototype MSE wall and instrumentation for long-term performance. The analytical work comprises finite difference modeling using the Fast Lagrangian Analysis of Continua (FLAC) software, (i) For creep up to 10,000 hours accelerated exposure for HDPE and PET geogrids, with super-ambient temperatures and soil water conditions related to soil conditions in Florida, the significant part of creep was due to temperatures and not solution exposures, with creep rupture occurring primarily for HDPE. (ii) For durability, performance at ambient temperatures was extrapolated, based on the Arrhenius method. The variation in degradation between the different solutions was minimal, indicating hydrolysis as the main cause for PET at elevated temperatures. (iii) Two HDPE and two PET reinforcement small scale (1:5.5) MSE walls were tested, with different surcharges each for 72 hour periods. Panel movements, strains in the reinforcement, and wall settlements were measured, indicating values smaller than the predicted, mostly for the smaller surcharges due to distortion caused by scaling neglecting the gravity effect. (iv) For analysis with FLAC computer software, two correction factors "a" and "b" were applied to correct the discrepancies between the model and the test values. The PET MSE small scale wall showed more deviation because the material has a low modulus of elasticity. (v) A preliminary comparison of the small scale and the prototype MSE wall behavior indicated discrepancies due to distortion scaling related to the lack of gravity simulation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In recent history, C. jamaicense has been displaced by another native monocot, T. domingensis, predominantly resulting from increased phosphorous enrichment in the Everglades. This study aimed to elucidate these two species responses to low and high [Pi] in terms of allocation, photosynthate partitioning and growth. C. jamaicense growth was independent of Pi, while T. domingensis growth increased with [Pi]. Under high [Pi], allocation to younger T. domingensis shoots occurred, while C. jamaicense shoots retained more [Pi], while low [Pi] resulted in homogeneous allocation patterns for both species. Additionally, Pi deficiencies induced carbohydrate levels in older shoots of T. domingensis, while [Pi] had no effect on photosynthate partitioning patterns in C. jamaicense. ACP activity was induced by Pi deficiency in all T. domingensis shoots and increased with shoot age, while no effect was observed in C. jamaicense. Results indicate these two species differ in allocation strategies when [Pi] is altered.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In the Florida Everglades, sawgrass has been displaced by cattail, predominantly resulting from phosphate enrichment. It has been found that phosphate transporters and arbuscular mycorrhizal (AM) fungi play an important role in phosphate uptake in the plants. This study aimed to reveal the symbiosis between AM fungi and sawgrass and cattail and identify the phosphate transporters, especially AM-specific phosphate transporters in these two species. AM colonization was only found in sawgrass roots, not cattail, at low phosphate concentrations in lab and field samples by trypan blue staining. AM fungi could increase sawgrass growth and had little effect on cattail growth. Four phosphate transporters were identified in sawgrass. CjPT1, CjPT2 and CjPT3 were expressed in roots and shoots independent of AM fungi and phosphate availability, while CjPT4 appeared to be an AM regulated phosphate transporter gene and its expression was induced by AM fungi.