Energy consumption

Model
Digital Document
Publisher
Florida Atlantic University
Description
El Niño Southern Oscillation (ENSO) occurrences have a well-established impact on regional hydroclimatic variability and alterations in crucial climatic factors such as temperature and precipitation. The impact of ENSO on temperature extremes can cause fluctuations in energy consumption, leading to the need for energy utilities to implement more effective management measures. This study aims to evaluate the potential impacts of El Niño Southern Oscillation (ENSO) events on local temperature patterns & extremes and residential energy usage in South Florida. The region of focus consists of three Counties: Miami-Dade, Broward, and Palm Beach. The impact of ENSO occurrences on temperature is assessed by analyzing long-term monthly average, minimum, and maximum temperature data from numerous weather stations in these counties, spanning from 1961 to 2018. The study analyzes variations of monthly electricity usage data acquired from a local power utility company (e.g., Florida Power & Light) and temperature data from 2001 to 2018. Temporal frames that align with the three phases of ENSO (namely warm, cool, and neutral) are employed to assess variations in temperature and energy consumption. Nonparametric hypothesis tests are employed to validate statistically significant variations in temperature and residential energy consumption across the stages of ENSO. This study aims to analyze the potential regional and temporal impacts of ENSO episodes on temperature and residential energy consumption in South Florida. Initial findings indicate that the non-uniform distribution of temperature, affected by El Niño and La Niña occurrences, impacts the amount of energy consumed by households in South Florida.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The Straits of Florida has been noted as a potential location for extraction of the kydrokinetic energy of the Florida Current, in view of the strength of the current and its proximity to the shore. ... This research explores the Florida Current as a potential renewable energy source. By utilizing historical data, in situ observations of the Florida Current, and computer model data, the hydrokinetic resource of the Florida Current is characterized both spatially and temporally. Subsequently, based on the geographic variability of the hydrokinetic power and other factors that impact the economy of a hydrokinetic turbine array installation, the ideal locations for turbine array installation within the Florida Current are identified.... Additionally, an interactive tool has been developed in which array parameters are input - including installation location, turbine diameter, turbine cut-in speed, etc. - and array extraction estimates, ideal installation position, and water depth at the installation points are output. As ocean model data is prominently used in this research, a discussion about the limitations of the ocean model data and a method for overcoming these limitations are described. Globally, the distribution of hydrokinetic power intensity is evaluated to identify other currents that have a high hydrokinetic resource.