Radiation--Dosage.

Model
Digital Document
Publisher
Florida Atlantic University
Description
The goal of this study was to improve dosimetry for pelvic, lung, head and neck, and other cancers sites with aspherical planning target volumes (PTV) using a new algorithm for collimator optimization for intensity modulated radiation therapy (IMRT) that minimizes the x-jaw gap (CAX) and the area of the jaws (CAA) for each treatment field.
A retroactive study on the effects of collimator optimization of 20 patients was performed by comparing metric results for new collimator optimization techniques in Eclipse version 11.0. Keeping all other parameters equal, multiple plans are created using four collimator techniques: CA0, all fields have collimators set to 0°, CAE, using the Eclipse collimator optimization, CAA, minimizing the area of the jaws around the PTV, and CAX, minimizing the x-jaw gap. The minimum area and the minimum x-jaw angles are found by evaluating each field beam’s eye view of the PTV with ImageJ and finding the desired parameters with a custom script. The evaluation of the plans included the monitor units (MU), the maximum dose of the plan, the maximum dose to organs at risk (OAR), the conformity index (CI) and the number of fields that are calculated to split.
Compared to the CA0 plans, the monitor units decreased on average by 6% for the CAX method with a p-value of 0.01 from an ANOVA test. The average maximum dose remained within 1.1% difference between all four methods with the lowest given by CAX. The maximum dose to the most at risk organ was best spared by the CAA method, which decreased by 0.62% compared to the CA0. Minimizing the x-jaws significantly reduced the number of split fields from 61 to 37.
In every metric tested the CAX optimization produced comparable or superior results compared to the other three techniques. For aspherical PTVs, CAX on average reduced the number of split fields, lowered the maximum dose, minimized the dose to the surrounding OAR, and decreased the monitor units. This is achieved while maintaining the same control of the PTV.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Intensity modulated radiation therapy (IMRT) is a cancer treatment method in which the intensities of the radiation beams are modulated; therefore these beams have non-uniform radiation intensities. The overall result is the delivery of the prescribed dose in the target volume. The dose distribution is conformal to the shape of the target and minimizes the dose to the nearby critical organs. An inverse planning algorithm is used to obtain those non-uniform beam intensities. In inverse treatment planning, the treatment plan is achieved by using an optimization process. The optimized plan results to a high-quality dose distribution in the planning target volume (PTV), which receives the prescribed dose while the dose that is received by the organs at risk (OARs) is reduced. Accordingly, an objective function has to be defined for the PTV, while some constraints have to be considered to handle the dose limitations for the OARs.