Cyber security

Model
Digital Document
Publisher
Florida Atlantic University
Description
Machine learning is having an increased impact on the Cyber Security landscape. The ability for predictive models to accurately identify attack patterns in security data is set to overtake more traditional detection methods. Industry demand has led to an uptick in research in the application of machine learning for Cyber Security. To facilitate this research many datasets have been created and made public. This thesis provides an in-depth analysis of one of the newest datasets, Bot-IoT. The full dataset contains about 73 million instances (big data), 3 dependent features, and 43 independent features. The purpose of this thesis is to provide researchers with a foundational understanding of Bot-IoT, its development, its features, its composition, and its pitfalls. It will also summarize many of the published works that utilize Bot-IoT and will propose new areas of research based on the issues identified in the current research and in the dataset.
Model
Digital Document
Publisher
Florida Atlantic University
Description
While it is evident that network services continue to play an ever-increasing role in our daily lives, it is less evident that our information infrastructure requires a concerted, well-conceived, and fastidiously executed strategy to remain viable. Government agencies, Non-Governmental Organizations (\NGOs"), and private organizations are all targets for malicious online activity. Security has deservedly become a serious focus for organizations that seek to assume a more proactive posture; in order to deal with the many facets of securing their infrastructure.
At the same time, the discipline of data science has rapidly grown into a prominent role, as once purely theoretical machine learning algorithms have become practical for implementation. This is especially noteworthy, as principles that now fall neatly into the field of data science has been contemplated for quite some time, and as much as over two hundred years ago. Visionaries like Thomas Bayes [18], Andrey Andreyevich Markov [65], Frank Rosenblatt [88], and so many others made incredible contributions to the field long before the impact of Moore's law [92] would make such theoretical work commonplace for practical use; giving rise to what has come to be known as "Data Science".