Aquatic animals

Model
Digital Document
Publisher
Florida Atlantic University
Description
The olfactory system is the most highly developed system for molecular sensing in vertebrates. Despite their reputation for being particularly olfactory driven, little is known about how this sense functions in elasmobranch fishes. The goal of this dissertation was to examine the morphology and physiology of elasmobranchs to compare their olfactory system with teleost fishes and more derived vertebrates. To test the hypotheses that elasmobranchs possess greater olfactory sensitivities than teleosts and that lamellar surface area is correlated to sensitivity, I compared the surface area of the olfactory lamellae and the olfactory sensitivities of five phylogenetically diverse elasmobranch species. The olfactory thresholds reported here (10-9 to 10-6 M) were comparable to those previously reported for teleosts and did not correlate with lamellar surface area. Since aquatic species are subject to similar environmental amino acid levels, they appear to have converged upon similar amino acid sensitivities. To test the hypothesis that elasmobranchs are able to detect bile salt odorants despite lacking ciliated olfactory receptor neurons (ORNs), the type of ORN that mediates bile salt detection in the teleosts, I quantified the olfactory specificity and sensitivity of two elasmobranch species to four, teleost-produced C24 bile salts. Both species responded to all four bile salts, but demonstrated smaller relative responses and less sensitivity compared to teleosts and agnathans. This may indicate that elasmobranchs don't rely on bile salts to detect teleost prey. Also, the olfactory system of elasmobranchs contains molecular olfactory receptors for bile salts independent of those that detect amino acids, similar to teleosts.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Although most batoids (skates and rays) are benthic, only the skates (Rajidae) have been described as performing benthic locomotion, termed 'punting'. While keeping the rest of the body motionless, the skate's specialized pelvic fins are planted into the substrate and then retracted caudally, which thrusts the body forward. This may be advantageous for locating and feeding on prey, avoiding predators, and reducing energetic costs. By integrating kinematic, musculoskeletal, material properties, and compositional analyses across a range of morphologically and phylogenetically diverse batoids, this dissertation (i) demonstrates that punting is not confined to the skates, and (ii) provides reliable anatomical and mechanical predictors of punting ability. Batoids in this study performed true punting (employing only pelvic fins), or augmented punting (employing pectoral and pelvic fins). Despite the additional thrust from the pectoral fins, augmented punters failed to exceed the punting c apabilities of the true punters. True punters' pelvic fins had greater surface area and more specialized and robust musculature compared to the augmented punters' fins. The flexural stiffness of the main skeletal element used in punting, the propterygium, correlated with punting ability (3.37 x 10-5 - 1.80 x 10-4 Nm2). Variation was due to differences in mineral content (24.4-48-9% dry mass), and thus, material stiffness (140-2533 MPa), and second moment of area. The propterygium's radius-to-thickness ratio (mean = 5.52 +-0.441 SE) indicated that the propterygium would support true and augmented punters, but not non-punters, in an aquatic environment. All propterygia would fail on land. Geometric and linear morphometric analyses of 61 batoid pelvic girdles demonstrated that pelvic girdle shape can predict punting and swimming ability and taxonomic attribution to Order.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The central importance of vision to an organism is evident in the anatomical and physiological adaptations within the eye that can be correlated to the organism's behavior and ecology. The goal of this study was to perform a functional analysis of adaptations within the elasmobranch visual system. An integrative approach was used to examine morphological and physiological adaptations in several species and link these adaptations to phylogeny, locomotion, habitat, behavior and ecology. Functional aspects investigated were eye position, pupil shape, spectral sensitivity, temporal resolution, the extent of the visual field and ultimately the integration of the visual and electrosensory systems. The elasmobranch eye adapts to the light environment of its habitat. Sharks from similar habitats had similar spectral sensitivities such as the bonnethead and blacknose sharks, both maximally sensitive to blue light of 480 nm. The spectral sensitivity of the scalloped hammerhead, which lives in a different environment, was maximally sensitive to green light (530 nm). The temporal characteristics of the eye also matched habitat and lifestyle. Species experiencing variable light conditions exhibited increased critical flicker-fusion frequencies, such as the bonnethead (31 Hz) and scalloped hammerhead (27 Hz), in contrast to deeper or more nocturnal species such as the blacknose shark (18 Hz). Elasmobranch visual fields correlated to each species' lifestyle, habitat and foraging strategy. Expansive monocular views, including a 360° panoramic view in the yellow stingray, were measured in species that rely on vision for vigilance against predators.