Commutative rings

Model
Digital Document
Publisher
Florida Atlantic University
Description
An algebraic surface defined by an equation of the form z2 = (x+a1y) ... (x + any) (x - 1) is studied, from both an algebraic and geometric point of view. It is shown that the surface is rational and contains a singular point which is nonrational. The class group of Weil divisors is computed and the Brauer group of Azumaya algebras is studied. Viewing the surface as a cyclic cover of the affine plane, all of the terms in the cohomology sequence of Chase, Harrison and Roseberg are computed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We say that a commutative ring R has the unique decomposition into ideals (UDI) property if, for any R-module which decomposes into a finite direct sum of indecomposable ideals, this decomposition is unique up to the order and isomorphism class of the ideals. In a 2001 paper, Goeters and Olberding characterize the UDI property for Noetherian integral domains. In Chapters 1-3 the UDI property for reduced Noetherian rings is characterized. In Chapter 4 it is shown that overrings of one-dimensional reduced commutative Noetherian rings with the UDI property have the UDI property, also. In Chapter 5 we show that the UDI property implies the Krull-Schmidt property for direct sums of torsion-free rank one modules for a reduced local commutative Noetherian one-dimensional ring R.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The structure of minimal zero-dimensional extension of rings with Noetherian spectrum in which zero is a primary ideal and with at most one prime ideal of height greater than one is determined. These rings include K[[X,T]] where K is a field and Dedenkind domains, but need not be Noetherian nor integrally closed. We show that for such a ring R there is a one-to-one correspondence between isomorphism classes of minimal zero-dimensional extensions of R and sets M, where the elements of M are ideals of R primary for distinct prime ideals of height greater than zero. A subsidiary result is the classification of minimal zero-dimensional extensions of general ZPI-rings.