Dhanak, Manhar R.

Person Preferred Name
Dhanak, Manhar R.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Research on collaboration among unmanned platforms is essential to improve the applications for autonomous missions, by expanding the working environment of the robotic systems, and reducing the risks and the costs associated with conducting manned operations. This research is devoted to enable the collaboration between an Unmanned Surface Vehicle (USV) and an Autonomous Underwater Vehicle (AUV), by allowing the first one to launch and recover the second one. The objective of this dissertation is to identify possible methods to launch and recover a REMUS 100 AUV from a WAM-V 16 USV, thus developing this capability by designing and implementing a launch and recovery system (LARS). To meet this objective, a series of preliminary experiments was first performed to identify two distinct methods to launch and recover the AUV: mobile and semi-stationary. Both methods have been simulated using the Orcaflex software. Subsequently, the necessary control systems to create the mandatory USV autonomy for the purpose of launch and recovery were developed. Specifically, a series of low-level controllers were designed and implemented to enable two autonomous maneuvers on the USV: station-keeping and speed & heading control. In addition, a level of intelligence to autonomously identify the optimal operating conditions within the vehicles' working environment, was derived and integrated on the USV. Lastly, a LARS was designed and implemented on the vehicles to perform the operation following the proposed methodology. The LARS and all subsystems developed for this research were extensively tested through sea-trials. The methodology for launch and recovery, the design of the LARS and the experimental findings are reported in this document.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This research focuses on the study of the behavior of a high speed vehicle and particularly an air-cushion vehicle (ACV) in varying bathymetry. An extensive data acquisition system is developed to gather data during the experiments. Four groups of experiments are conducted in a wave tank using a scale model surface effect ship to generate a database that is post processed to assess phenomena under various conditions. Group No1 experiments involved characterizing the wave motion in the tank in the absence of the vehicle as the waves transformed in response to variation in water depth. Based on these experimental datasets, the wave breaking type and position are predicted using a machine learning approach and, more specifically, a neural network of the multilayer perceptron type. Group No2 experiments are in support of a parametric study to evaluate the vehicle's performance under calm water conditions when the control inputs are varied. A system identific ation approach based on the experimental data is proposed to create a model that predicts the vehicles translational motion. In group No3 the experiments involve the vehicle travelling with a non-zero forward speed and encountering transforming head and following seas. Transient and non-linear phenomena and relations among parameters are observed Group No 4 experiments involve the vehicle maintaining a position in the "surf-zone" under manual control, encountering breaking waves that break on its bow skirt. Non-linear phenomena are discussed based on the experimental results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Underwater vehicles often use acoustics or dead reckoning for global positioning, which is impractical for low cost, high proximity applications. An optical based positional feedback system for a wave tank operated biomimetic station-keeping vehicle was made using an extended Kalman filter and a model of a nearby light source. After physical light model verification, the filter estimated surge, sway, and heading with 6 irradiance sensors and a low cost inertial measurement unit (~$15). Physical testing with video feedback suggests an average error of ~2cm in surge and sway, and ~3deg in yaw, over a 1200 cm2 operational area. This is 2-3 times better, and more consistent, than adaptations of prior art tested alongside the extended Kalman filter feedback system. The physical performance of the biomimetic platform was also tested. It has a repeatable forward velocity response with a max of 0.3 m/s and fair stability in surface testing conditions.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A methodology to estimate the state of a moving marine vehicle, defined by its position, velocity and heading, from an unmanned surface vehicle (USV), also in motion, using a stereo vision-based system, is presented in this work, in support of following a target vehicle using an USV.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents two-dimensional hydrodynamic analysis of flapping foils for the propulsion of underwater vehicles using a source-vortex panel. Using a simulation program developed in MatLab, the hydrodynamic forces (such as the lift and the drag) as well as the propulsion thrust and efficiency are computed with this method. The assumptions made in the analysis are that the flow around a hydrofoil is two-dimensional, incompressible and inviscid. The analysis is first considered for the case of a deeply submerged hydrofoil followed by the case where it is located in shallow water depth or near the free surface. In the second case, the presence of the free surface and wave effects are taken into account, specifically at high and low frequencies and small and large amplitudes of flapping. The objective is to determine the thrust and efficiency of the flapping –foils under the influence of added effects of the free surface. Results show that the free-surface can significantly affect the foil performance by increasing the efficiency particularly at high Frequencies.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This study is performed as a partial aid to a larger study that aims to determine if
electromagnetic fields produced by underwater power cables have any effect on marine
species. In this study, a new numerical method for calculating magnetic fields around
subsea power cables is presented and tested. The numerical method is derived from
electromagnetic theory, and the program, Matlab, is implemented in order to run the
simulations. The Matlab code is validated by performing a series of tests in which the
theoretical code is compared with other previously validated magnetic field solvers. Three
main tests are carried out; two of these tests are physical and involve the use of a
magnetometer, and the third is numerical and compares the code with another numerical
model known as Ansys. The data produced by the Matlab code remains consistent with
the measured values from both the magnetometer and the Ansys program; thus, the code is
considered valid. The validated Matlab code can then be implemented into other parts of
the study in order to plot the magnetic field around a specific power cable.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis discusses the coupling of a mechanical and electrical oscillator, an arrangement that is often encountered in mechatronics actuators and sensors. The dynamics of this coupled system is mathematically modeled and a low pass equivalent model is presented. Numerical simulations are then performed, for various input signals to characterize the nonlinear relationship between the electrical current and the displacement of the mass. Lastly a framework is proposed to estimate the mass position without the use of a position sensor, enabling the sensorless control of the coupled system and additionally providing the ability for the system to act as an actuator or a sensor. This is of value for health monitoring, diagnostics and prognostics, actuation and power transfer of a number of interconnected machines that have more than one electrical system, driving corresponding mechanical subsystems while being driven by the same voltage source and at the same time being spectrally separated and independent.
Model
Digital Document
Publisher
Florida Atlantic University
Description
When a boundary-layer flow, either laminar or turbulent, encounters a hemispherical body extending from a surface, a horseshoe-shaped vortex forms at the juncture. In this thesis, we study the evolution of this vortex using a numerical inviscid model and laboratory experiments. The numerical model is based on determining the evolution of the filament using the cut-off method. The assumption is that although the generation of the vortex depends on viscous effects, the dynamic evolution is well described by inviscid equations of motion. It is found that the vortex filament is fairly steady on the upstream side but on the downstream side, travelling waves appear on it which cannot be suppressed through evolution. For a range of Reynolds number, steady horseshoe-shaped vortex was obtained in the experiments, revealing the shape past the hemisphere. This is compared with the numerical results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Designing a propeller for optimum performance on a human powered underwater vehicle presents a significant engineering challenge. The propeller must be highly efficient to utilize the inherently low power output of a human. Also, the propeller must be correctly matched to the maximum sustainable torque of the propulsor. This thesis experimentally investigates a minimum induced loss propeller design program and its application to a human powered underwater vehicle. The design program is based on the vortex theory of propellers. The work includes experimental measurements of the velocity and rotational rate of three propellers designed with the minimum induced loss propeller design program. This positively verifies the output of the design algorithm. Also, the research, through the use of an underwater ergometer, determines the maximum power and torque sustainable by a human pedaling underwater. Final results of the research show that the design algorithm overestimates the blade section angles by 25% because the design program neglects the influence of the wake of the vehicle.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The rollup of a vortex sheet of elliptic span loading in the presence of a vortex of finite core size is studied in the Trefftz plane. The vorticity in the finite vortex is taken to be uniform and sign opposite to that of the sheet and the flow is assumed to be inviscid and incompressible. A numerical scheme is developed to determine the evolution of (a) the finite vortex using the Contour Dynamics technique, (b) the vortex sheet using an algorithm developed by Krasny. The interaction is shown to substantially affect the development of the vortex sheet rollup. The vortex sheet undergoes significant deformation at the rolling up tip region due to its devouring the vortex patch as well as due to the formation of secondary rollup features on the sheet. These features are believed to be important in inhibiting rollup considerably. The interaction is quantified by using a criterion developed to measure the extent of the tip vortex rollup and its characteristics are studied for a range of flow parameters. The strength of the rolling up tip region of the vortex sheet is found to be highly dependent on the location and the vorticity in the finite vortex.