Synthesis

Model
Digital Document
Publisher
Florida Atlantic University
Description
In this dissertation, we discuss the development of a synthetic method to functionalize various α-haloglycine esters, as key precursors to a large variety of non-proteinogenic α-amino acids (Xaas). At first, we discovered a very practical and high yielding acetyl chloride-mediated cascade reaction to synthesize α-arylated amino esters in one-pot. In this multicomponent reaction (MCR), a primary carbamate was condensed with a glyoxylate, followed by an in situ halogenation which proved essential to trigger the final Friedel−Crafts functionalization. After careful reaction optimization, a plethora of arene nucleophiles were reacted with high regioselectively in CHCl3 at low temperatures (Method A) while less activated arenes reacted more cleanly in CH3CN and at higher temperatures (Method B). To broaden the scope of this reaction to acid sensitive nucleophiles, a one-pot reaction was designed via evaporation of all acid by-products at the α-haloglycine stage. The anion-binding Schreiner’s thiourea catalyst proved to be extremely efficient to promote this complementary approach (Method C) which relies on the chloride leaving group activation by the catalyst to assist the functionalization stage and deliver the α-amino ester product.
In the second chapter, some highly practical and efficient preparations of α-haloglycine esters in one-pot have been developed to generate useful precursors of non-proteinogenic α-amino esters. Also, a mild and unique AcOH(cat.)/AcCl system was found to promote an autocatalytic-like condensation/deoxy halogenation and facilitate the multicomponent assembly of non-proteinogenic α-amino esters. Friedel–Crafts reaction between α-chloroglycine and N-methylindole have been studied in details to understand the mechanistic intricacy of this reaction. Our findings through the initial kinetic profiling support that the arylation likely proceeds via a SN1-like (or SN2C+) mechanism.
In third chapter, we discuss the development of the most challenging α,α-disubstituted amino esters in a multicomponent fashion. Our results highlight that the MCR proceeds via the formation of an enamide intermediate, which is further tautomerized to corresponding iminium to produce the desired product. In collaboration with Eli Lilly at the Automated Synthesis Laboratory (ASL), we have developed silver (I) salts mediated Friedel–Crafts reaction for synthesis of α-trifluoromethylated α-amino esters on a fully automatized robot.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The main focus of this thesis is to present the structural and photophysical characteristics of the coordination polymers [Ln(C7H3NO4)(C7H4NO4)(H2O)]n (Ln is Pr, Nd, Sm, Eu, and Tb), as well as attempting to synthesize the novel organic linker 4,4'(4,8-Dihydrobenzo[1,2-b:4,5-b']dithiophene-4,8-diyl)dibenzoic acid (BDTDC). Various lanthanide salts were coordinated with 2,3-pyridinecarboxylate (2,3- pydc) via hydrothermal synthesis. ... Progress was made toward the synthesis of a novel metal-organic framework linker BDTDC. Synthesis of the intermediate benzo[1,2-b:4,5-b']dithiophene as well as the determination of the crystal structure, were performed successfully and are reported herein.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Within solid-state chemistry, coordination polymers have gained interest for use in various applications such as sensing, catalysis, display technology, hydrogen storage, etc. The use of lanthanide ions in these materials provides a mean of exploring how structure may affect luminescence efficiency. In this study, the photophysics of several lanthanide benzenecarboxylates was studied. This data combined with data from other coordination polymers created in our lab indicate that the established guidelines for producing highly efficient materials may not correlate directly from solution to the solid state and that structure may also play a role.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Briareum asbestinum, a soft coral, is a rich source of diterpenoid natural products. The secondary metabolites of B. asbestinum fall into four classes : asbestinins, briarellins, briareolate esters, and briaranes. Briareolate esters have been shown to possess biological activity and were previously only reported from Tobago. Our group recently isolated briareolate esters from a specimen collected off the coast of Boca Raton, Florida. To determine whether location has an impact on the chemistry produced by the organism, a method to discern between chemotypes was sought. Several techniques including thin layer chromatography (TLC), high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and sclerite analysis were employed, with NMR being the most successful method. By utilizing both 1H and COSY NMR experiments, it is possible to differentiate between the chemotypes of B. asbestinum. Application of this method allowed analysis of chemical variability with respect to location.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The zinc finger associated domain (ZAD) family of transcription factors from Drosophila melanogaster is not well described in the literature, in part because it is very difficult to study by traditional mutagenesis screens. Bioinformatic studies indicate this is due to overlapping functions remaining after a recent evolutionary divergence. I set out to use in vitro-binding techniques to identify the characteristics of the ZAD family and test this theory. I have constructed glutathione S-transferase (GST)-ZAD domain chimeric proteins for use in pull down protein binding assays,and GST-Zinc finger (ZnF) array domain chimera for electrophoretic mobility shift assays (EMSA). Protein binding assays indicated two putative conserved interactors, similar to the analogous KRAB system in mammals. ... Competitive bindings were carried out to show a specificity of binding conferred by the identified conserved positions. While the consensus binding sites show relatively few similarities, the predicted target genes identified by the consensus binding sites show significant overlap. The nature of this overlap conforms to the known characteristics of the ZAD family but points to a more positive selection to maintain conservation of function.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Transcriptional regulation by the family of SNAG (Snail/Gfi-1) zinc fingers has been shown to play a role in various developmental states and diseases. These transcriptional repressors have function in both DNA- and protein-binding, allowing for multiple interactions by a single family member. This work aims to characterize the SNAG members Slug, Smuc, Snail, Scratch, Gfi-1, Gfi-1B, and IA-1 in terms of both DNA-protein and protein-protein interactions. The specific DNA sequences to which the zinc finger regions bind were determined for each member, and a general consensus of TGCACCTGTCCGA, was developed for four of the members. Via these studies, we also reveal thebinding affinities of E-box (CANNTG) sequences to the members, since this core is found for multiple members' binding sites. Additionally, protein-protein interactions of SNAG members to other biological molecules were investigated. The Slug domain and Scratch domain have unknown function, yet through yeast two-hybrid screening, we were able to determine protein interaction partners for them as well as for other full length SNAG members. These protein-interacting partners have suggested function as corepressors during transcriptional repression. The comprehensive information determined from these studies allow for a better understanding of the functional relationship between SNAG-ZFPs and other genes. The collected data not only creates a new profile for each member investigated, but it also allows for further studies to be initiated from the results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We report here the development of new and more general synthetic pathways for the preparation of allenyl and alkynyl carbonyls. These highly dense functionalized compounds were utilized as key intermediates for the synthesis of [3.2.1] and [3.3.1] bicyclic framework, the motifs found in many natural products. A convenient method described for the dehydration of ketoesters to generate conjugated and deconjugated alkynyl esters and conjugated allenyl esters. This sequential one-pot method involves the formation of a vinyl triflate monoanion intermediate that leads to the selective formation of alkynes or allenes depending on additives and conditions used. Product outcomes appear to be a function of unique monoand dianion mechanisms which are described. Our design of a Morita-Baylis-Hilman (MBH) reaction to include a fast silyl 1,3- Brook rearrangement has enabled the first ever anion-catalysis. This new reaction makes possible the addition of both aliphatic and aromatic aldehydes to s ilylallenes leading to carbinol allenoates. These new MBH reactions products allow for a fasttracked synthesis of [3.2.1] bisoxa-bicycles which make up the framework of many biologically active natural products including Vitisinol D. The development of cyclic addition of hydrazine nitrogen to unactivated alkynes catalyzed by non-metals is reported. Starting from readily accessible silyl allenyl esters, alkynyl hydrazines are prepared in one step and subsequently undergo unprecedented cyclization reactions in the presence of ammonium and phosphonium catalysts leading to dehydro-azaproline products. These heterocycles were also produced in high enantiomeric excesses using chiral ammonium phase transfer catalysts via a kinetic resolution pathway.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We report here the development of very efficient aryl- and quinolinyl- sulfonate based leaving groups, termed Nucleophile Assisting Leaving Groups (NALGs), which substantially accelerate the rate of nucleophilic substitution reactions with metal halides. Detailed synthesis and kinetics study are described herein. Our synthesized NALGs have shown great reactivity towards poor nucleophiles and/or substrates traditionally considered too hindered to undergo nucleophilic attack. The abundant existence of halide, azide and amine in natural products demands new synthetic pathway. To fulfill this requirement, new mild stereoretentive halogenations (chlorination, bromination and iodination) reactions have also been developed for secondary cyclic alcohols using NALGs involving titanium (IV) reagents. The novel methodology can be extended to Azidation reactions as well with titanium (IV) azide, in which Ti (N3)4 is the first time being engaged in organic synthesis. Beased on the NALGs theory we discover the chlorosulfite can be a simplest NALG and applied as the intermediate in mild one-pot stereoretentive halogenations (chlorination and bromination) using titanium (IV) halides as catalysts or stoichiometric reagents. These reactions were found to be particularly efficient for cyclic alcohols. Finally, an efficient mild bromination and iodination reaction for primary and secondary alcohols with Grignard reagents is also reported. This reaction exhibits the generality with substrates with various leaving groups. The important features of this reaction are that, for the first time, bromide formation using Grignard reagents without the Cu (I) catalysts.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We report here the development of very efficient sulfonate based leaving groups, termed Nucleophile Assisting Leaving Groups (NALGs), to accelerate the rate of nucleophilic substitution reactions involving poor nucleophiles and/or substrates traditionally considered too hindered to undergo nucleophilic attack. Indeed NALGs have shown exceptional ability in improving rate of nucleophilic substitution reactions. New very mild stereoretentive halogenations and azidation reactions have also been developed for secondary cyclic alcohols using NALGs involving titanium(IV) reagents. This reaction is particularly significant since the carbon-halogen bond is found widely in natural products and is used extensively as a synthesis intermediate. Azide is also a synthetically important functional group from which a variety of biologically important functional groups are conveniently obtained. Though stereoretentive chlorination and bromination reactions are known, we have developed, for the first time, a stereoretentive azidation reaction using titanium(IV) azide, a reagent not previously used in organic synthesis. During our development of stereoretentive reactions, we eventually developed very efficient, mild, two-step one-pot stereoretentive halogenations (chlorination and bromination) using titanium(IV) halides as catalysts or stoichiometric reagents. These reactions were found to be particularly efficient for cyclic alcohols. An efficient one pot stereoretentive amidation reaction for secondary cyclic alcohols is also reported. The important features of this reaction are that, for the first time, chlorosulfite (prepared in situ from alcohol using thionylchloride) has been used as a leaving group and titanium(IV) fluoride as an activator.