Foreign exchange--Forecasting--Mathematical models

Model
Digital Document
Publisher
Florida Atlantic University
Description
Time series is a phenomena which appears in the financial world in various forms. One of the objectives of time series is to forecast the future based on the past. The goal of this thesis is to use foreign exchange time series, and predict its future values and trends using neural networks. The thesis covers background work in this area and discusses the results obtained by other researchers. A neural network is then developed to predict the future values of the USD/GBP and USD/DEM exchange rates. Both single-step and iterated multi-step predictions are considered. The performance of neural networks strongly depends on the inputs supplied. The effect of the changes in the number of inputs is also considered, and a method suggested for deciding on the optimum number. The forecasting of foreign exchange rates is a challenge because of the dynamic nature of the FOREX market and its dependencies on world events. The tool used for building the neural network and validating the approach is "Brainmaker".