Model
Digital Document
Publisher
Florida Atlantic University
Description
The common approach for finding objects buried under the seabed is to use a single channel chirp reflection profiler. Reflection profiles lack information on target location, geometry and size. This thesis investigates methods for visualizing buried objects in noisy 3D acoustic data acquired by a small aperture scanning sonar. Various surface and volume rendering methods are tested with synthetic datasets containing fluid loaded spheres and with experimental data acquired with a 4-by-8 planar hydrophone array towed over buried objects with various aspects and size. The Maximum Intensity Projection is the best of the tested methods for real-time visualization of the data where a global overview of the targets is needed. A surface rendering technique such as the Marching Cubes is useful for offline measurement of the geometry and size of buried objects selected by the operator.
Member of