Airplanes

Model
Digital Document
Publisher
Florida Atlantic University
Description
A detailed study is proposed for understanding the use of aircraft deicing and anti-icing fluids (ADAF) and optimal use of these fluids in airport operations. A detailed literature review of past and current technologies is conducted and possible opportunities to improve the use of ADAF and relevant recommendations are derived. Mathematical optimization models (e.g. MINLP with binary variables) based on a variety of objectives, which deal with exhaustive sets of system constraints are formulated, developed and applied to case studies. One real-life case study area which routinely carries out aircraft deicing is used for testing the mathematical optimization formulations for optimal use of fluids under budgetary and environmental compliance constraints. Based on the recommendations from one of the best optimization model formulations it is hoped that it will be used for a real-time implementation. Results from these formulations show the models to be robust and applicable.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The combination of highly turbulent airflow, flammable fluids, and numerous ignition sources makes aircraft engine nacelles a difficult fire zone to protect. Better understanding of nacelle air flow and how it influences the spread of fires and fire extinguishing agents is needed to improve the efficiency of fire suppression. The first objective was to establish a CFD model for a flow field test section to analyze the transport and dispersion of fire extinguishing agents in the presence of various clutter elements. To validate the use of the CFD model, the simulation results of the CFD model were compared to the experimental data and they show an agreement with the experimental data. The second objective was to present parametric studies to show the effects of the coflow speed, turbulence intensity and agent droplet size on the transport and dispersion of the agent particles downstream from the clutter elements.