Shells (Engineering)

Model
Digital Document
Publisher
Florida Atlantic University
Description
Delamination growth has been investigated as a potential failure mechanism for filament-wound composite cylinders used for offshore and underwater structures. Analysis and experiments on DCB, ENF, and MMB beam fracture specimens machined from angle-ply laminate panels and filament-wound composite cylinders are presented. Bending analysis of beam fracture specimens machined from flat panels and composite cylinders was derived from first order shear deformation theory and one-dimensional expressions obtained from laminated plate and shell theories. For the DCB specimens, elastic foundation effects were modeled. Experiments on flat, glass/polyester laminate beam specimens considered [0]6, [+/-30]5 and [+/-45] 5 lay-ups with mid-plane delaminations. Experiments on beam specimens machined from composite cylinders were conducted on [+/- q ]6 and [+/- q ]12 lay-ups with mid-surface delaminations where q = 30 degrees, 55 degrees and 85 degrees. For all lay-ups and specimen configurations, beam model predictions of compliance were in good agreement with experimental data over the range of laminate thicknesses, ply angles, and crack lengths examined. Fracture toughness for delamination propagation was examined for flat glass/polyester panels and glass/epoxy cylinders. The initiation value of mode II fracture toughness, GIIc, was much larger than the initiation value of mode I fracture toughness GIc. The initiation value of mixed mode fracture toughness, Gc, increased with decreased ratio GI/GII and increased ply angle q . Debonding of transversely oriented fiber bundles was observed as a major crack arrest and fracture resistance mechanism for the flat, glass/polyester angle-ply laminates. Bridging by interlaced fiber bundles and crack jumping to another interface contributed to crack arrest and limited the growth in the curved, glass/epoxy angle-ply laminates. For all lay-ups, the crack propagated in a non-uniform manner across the width of the specimen as explained by elastic coupling effects in the laminate beams of the cracked region.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This dissertation deals with the determination of buckling loads of composite cylindrical shell structures which involve uncertainty either in geometry, namely thickness variation, or in material properties. Systematic research has been carried out, which evolves from the simple isotropic cases to anisotropic cases. Since the initial geometric imperfection has a dominant role in the reduction of those imperfection-sensitive structures such as cylindrical shells, the combined effect of thickness variation and initial imperfection is also investigated in depth. Both analytic and numerical methods are used to derive the solutions to the problems and asymptotic formulas relating the buckling load to the geometric (thickness variation and/or initial imperfection) parameter are established. It is shown that the axisymmetric thickness variation has the most detrimental effect on the buckling load when the modal number of thickness variation is twice as much as that of the classical buckling mode. For the composite shells with uncertainty in material properties, the convex modelling is employed to evaluate the variability of buckling load. Based on the experimental data for the elastic moduli of the composite laminates, the upper and lower bounds of the buckling load are derived, which are numerically substantiated by the results from nonlinear programming. These bounds will be useful in practice and can provide engineers with a better view of the real load-carrying capacity of the composite structure. Finally, the elastic modulus is modeled as a function of coordinates to complete the study on variability of material property so that the result can be obtained to account for the situation where the elastic modulus is different from one place to another in the structure.