PID controllers

Model
Digital Document
Publisher
Florida Atlantic University
Description
One emerging application of parallel manipulators is to use them as CNC (Computerized Numerical Controlled) machine tools and recently several prototypes of such CNC machines have been developed, all based on hexapod machine--a type of parallel manipulators similar to a Stewart platform. The goal of this research is to develop an effective control scheme, cross-coupling control, for this type of CNC machine tools, which will reduce the contouring errors and thus further enhance their advantages. This dissertation describes the research work as follows. Firstly. based on the analysis of the kinematics and dynamics, a PID (Proportional-Integral-Derivative) controller was designed for each leg of the hexapod CNC machine. Secondly, real-time contour error models were developed and verified to determine not only for the calculation of the contour errors of the hexapod CNC machine but also for the general case of any machine tools. Thirdly, the contour errors of the hexapod CNC machine were investigated for a conventional PID controller. The results indicate that the accuracy of the hexapod machine is better than the conventional CNC machine tools even for mismatched axes and load exertion. Finally, a cross-coupling control scheme was proposed for the purpose to enhance the contour accuracy of this new type of hexapod CNC machine tools. A cross-coupling controller design for a 2-DOF platform was performed to provide the guidelines. Then, a cross-coupling controller for the new type of hexapod CNC machine tools was designed by feeding back the contour error to each axis. The efficiency of the proposed cross-coupling controller was verified through simulations. The result shows that the proposed cross-coupling controller is very effective in reducing the contouring errors. While cross-coupling controllers were originally proposed for conventional CNC machine tools, this research is the first attempt of expanding this concept to the new type of hexapod CNC machine tools.
Model
Digital Document
Publisher
Florida Atlantic University
Description
In this thesis multiple controllers are developed which command a small boat with twin tied outboard motors to hold a desired position. In the process of developing a controller to hold a position, controllers were first developed which follow a desired heading or path over ground with the motors outputting constant thrust. These heading and path following controllers were tuned and tested in a numerical simulation, then validated on the R/V Lee and Ocean Power vessels through sea trials in the Atlantic Ocean. After successful path following trials were performed, station keeping algorithms were developed and tuned in the numerical simulation, now with heading and thrust of the vessel both being variables to be controlled. After tuning in the numerical simulation, the Ocean power vessel was outfitted with systems for controlling throttle and steering with sea trials conducted in the Atlantic Ocean for station keeping.