Purification

Model
Digital Document
Publisher
Florida Atlantic University
Description
Since the United States Environmental Protection Agency (USEPA) began requiring landfills to implement a leachate collection system in 1991, the proper disposal of leachate has become a growing concern. The potential toxicity of landfill leachate will contaminate groundwater and soil if not managed properly. Research has been made in efforts to manage leachate in a cost-effective, single treatment process. Photocatalytic oxidation is an advanced oxidation process (AOP) which has shown ability to reduce toxicity of an array of leachate constituents including organics, inorganics and heavy metals. The purpose of this manuscript is to scale up the batch scale study of TiO2 photocatalytic degradation of leachate utilizing a pilot scale falling film reactor. In this research project, the use of UV/TiO2 for the removal of chemical oxygen demand (COD), ammonia, alkalinity and color will be studied in order to optimize catalyst dosage, determine pH effects and reaction kinetics and develop preliminary cost estimates.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This paper presents the results of the spike tests performed in the alternative water supply pilot testing program for the City of Pembroke Pines. It establishes the effectiveness of a protocol that can be used to gain further insight on the rejection capacities of RO membranes. An in-depth study of the molecular descriptors affecting rejection by RO membranes is presented and used in the development of a discriminant function analysis. This analysis proved to be an effective way to predict the passage of Emerging Substances of Concern (ESOCs) through RO membrane. Further, a principal component (PC) analysis was performed to determine which factors accounted the largest variation in RO permeability. Additionally, this paper defines the groundwork for a discriminant analysis model that, if further developed, could serve as an important tool to predict the rejection capabilities of RO treatment when handling with ESOCs.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis presents a model which estimates energy and cost savings that can be realized by implementing Energy Conservation Measures (ECMs) at mechanically aerated wastewater treatment plants (WWTPs) in southeast Florida. Historical plant monitoring data is used to estimate savings achieved by implementing innovative aeration technologies which include : 1) Fine Bubble DIffusers ; 2) Single-Stage Turbo Blowers ; 3) Automatic Dissolved Oxygen (DO) Control. Key assumptions for modeling performance of each technology are researched and discussed, such as trends in the future cost of electricity, efficiency of blowers, and practical average DO levels for each scenario. Capital cost estimates and operation maintenance (O&M) costs are estimated to complete life-cycle cost and payback analyses. The benefits are quantified on an individual and cumulative basis, to identify which technologies are cost-beneficial. The results demonstrate that levels of payback of 20 years or less are available at the three WWTPs studied.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A landfill is in a reserved space on land used for the disposal of refuse by utilizing the principles of engineering to confine the refuse to the smallest practical area to prevent the creation of nuisances to public health or safety (Andersen et al. 1967). However, because landfills are open to the atmosphere, rainfall can saturate them, resulting in a liquid called leachate. Leachate generated within the landfill contains suspended solids, soluble components of the waste and by-products from the degradation of the waste by various micro-organisms. Treatment of leachate is an emerging area of need. In this manuscript the main purpose is to investigate a laboratory scale batch reactor that is able to detoxify and treat leachate by using an advanced oxidation process (i.e. TiO2). Based on the results obtained from this ground breaking research, it appears that the process investigate has the potential to radically change the way landfill leachate is treated. Scale up may provide direction that can be used to improve the efficiency of the different stages of toxicity of leachate during the entire life of a landfill.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Barometric distillation is an alternative method of producing fresh water by desalination. This proposed process evaporates saline water at low pressure and consequently low temperature; low pressure conditions are achieved by use of barometric columns and condensation is by direct contact with a supply of fresh water that will be augmented by the distillate. Low-temperature sources of heat, such as the cooling water rejected by electrical power generating facilities, can supply this system with the latent heat of evaporation. Experiments are presented that show successful distillation with a temperature difference between evaporator and condenser smaller than 10ê C. Accumulation of dissolved gases coming out of solution, a classic problem in lowpressure distillation, is indirectly measured using a gas-tension sensor. The results of these experiments are used in an analysis of the specific energy required by a production process capable of producing 15 liters per hour. With a 20ê C difference, and neglecting latent heat, this analysis yields a specific energy of 1.85 kilowatt-hour per cubic meter, consumed by water pumping and by removal of non-condensable gases.