Titanium dioxide -- Industrial applications

Model
Digital Document
Publisher
Florida Atlantic University
Description
This thesis was about finding a recovery method for TiO2, using a TiO2 recovery technology, which was high enough to be economical ($10 - $15 per 1,000 gallons) to be adopted by wastewater treatment plants. When comparing recovery technologies, the top three which were investigated further through experimentation were a centrifuge, sedimentation tank, and microfilter membrane. Upon experimentation and research, the TiO2 recovery efficiencies of these technologies were 99.5%, 92.5%, and 96.3%, respectively. When doing economic analysis on these technologies comparing TiO2 efficiencies and capital and operational costs, the centrifuge was the most preferred economic option. Also, its cost did were in the economical range ($10 - $15/1,000 gallons) which makes even this technology economical. Besides that, important and valuable information about TiO2: settling behavior, particle size and zeta potential, interactions with COD, and filter operations (particle characterization) were discovered for future research and future testing on this issue.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The objective of this research was to determine if mature landfill leachate could be treated to a level so that it was safe to discharge to the environment. The treatment method was an Advanced Oxidation Process. The process utilized Titanium Dioxide and UV. Three different reactor types were used, falling film, flow through and falling film + Electron Magnetic Oxygen Hydrogen (EMOH). To improve removal pre-treatment with titanium dioxide settling were conducted in conjunction with treatment in a reactor. The best removal was obtained with pre-treatment with titanium dioxide settling, followed by the falling film + EMOH reactor. In 8 hours, removal was 63% for COD, 53% for ammonia, 73% for alkalinity and 98% for calcium hardness. The kinetics found in this experiment show that full treatment times for safe discharge vary between contaminates. For complete removal of all tested contaminates to safe discharge regulations requires 185 hour of treatment.