Ad hoc networks (Computer networks)

Model
Digital Document
Publisher
Florida Atlantic University
Description
Acoustic networks of autonomous underwater vehicles (AUVs) show great promise, but a lack of simulation tools and reliance on protocols originally developed for terrestrial radio networks has hindered progress. This work addresses both issues. A new simulator of underwater communication among AUVs provides accurate communication modeling and flexible vehicle behavior, while a new routing protocol, location-aware source routing (LASR) provides superior network performance. The new simulator was used to evaluate communication without networking, and then with networking using the coding or dynamic source routing (DSR) protocols. The results confirmed that a network was essential to ensure effective fleet-wide communication. The flooding protocol provided extremely reliable communication but with low message volumes. The DSR protocol, a popular routing protocol due to its effectiveness in terrestrial radio networks, proved to be a bad choice in an acoustic environment: in most cases, it suffered from both poor reliability and low message volumes. Due to the high acoustic latency, even moderate vehicle speeds caused the network topology to change faster than DSR could adapt. DSR's reliance on shortest-path routing also proved to be a significant disadvantage. Several DSR optimizations were also tested; most proved to be unhelpful or actually harmful in an underwater acoustic network. LASR was developed to address the problems noted in flooding and DSR. LASR was loosely derived from DSR, most significantly retaining source routes and the reply/request route discovery technique. However, LASR added features which proved, in simulation, to be significant advantages -- two of the most effective were a link/route metric and a node tracking system. To replace shortest-path routing, LASR used the expected transmission count (ETX) metric.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sensors are used to monitor and control the physical environment. A Wireless Sen- sor Network (WSN) is composed of a large number of sensor nodes that are densely deployed either inside the phenomenon or very close to it [18][5]. Sensor nodes measure various parameters of the environment and transmit data collected to one or more sinks, using hop-by-hop communication. Once a sink receives sensed data, it processes and forwards it to the users. Sensors are usually battery powered and it is hard to recharge them. It will take a limited time before they deplete their energy and become unfunctional. Optimizing energy consumption to prolong network lifetime is an important issue in wireless sensor networks. In mobile sensor networks, sensors can self-propel via springs [14], wheels [20], or they can be attached to transporters, such as robots [20] and vehicles [36]. In static sensor networks with uniform deployment (uniform density), sensors closest to the sink will die first, which will cause uneven energy consumption and limitation of network life- time. In the dissertation, the nonuniform density is studied and analyzed so that the energy consumption within the monitored area is balanced and the network lifetime is prolonged. Several mechanisms are proposed to relocate the sensors after the initial deployment to achieve the desired density while minimizing the total moving cost. Using mobile relays for data gathering is another energy efficient approach. Mobile sensors can be used as ferries, which carry data to the sink for static sensors so that expensive multi-hop communication and long distance communication are reduced. In this thesis, we propose a mobile relay based routing protocol that considers both energy efficiency and data delivery delay. It can be applied to both event-based reporting and periodical report applications.