Biochemical markers

Model
Digital Document
Publisher
Florida Atlantic University
Description
Transgenic mice were generated to express a restrictive cardiomyopathy (RCM) human cardiac troponin I (cTnI) R192H mutation in the heart. My study's objective was to assess cardiac function during the development of diastolic dysfunction and to gain insight into the pathophysiological impact of the RCM cTnI mutation. Cardiac function was monitored in cTnI193His mice and wild-type littermates for a period of 12 months. It progressed gradually from abnormal relaxation to diastolic dysfunction characterized with micro- echocardiography by a reversed E/A ratio, increased deceleration time, and prolonged isovolumetric relaxation time. The negative impact of cTnI193His on cardiac function was further demonstrated in isolated mouse working heart preparations. Dobutamine stimulation increased heart rate in cTnI193His mice but did not improve CO. The cTnI193His mice had a phenotype similar to that in human RCM patients carrying the cTnI mutation characterized morphologically by enlarged atria and restricted ventricle and functionally by diastolic dysfunction.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Heart disease including ischemic heart disease is the highest contributor to death and morbidity in the western world. The studies presented were conducted to determine possible pathways of protection of the heart against ischemia/reperfusion. We employed adenovirus mediated over-expression of Methionine sulfoxide reductase A (MsrA) in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation. Cells transfected with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation exhibited a 45% decrease in apoptosis as compared to controls. Likewise total cell death as determined by levels of Lactate Dehydrogenase (LDH) release was dramatically decreased by MsrA overexpression. The initial hypothesis that led to our testing sulindac was based on the fact that the S epimer of sulindac was a substrate for MsrA and that this compound might function as a catalytic anti-oxidant based on a reaction cycle that involved reductio n to sulindac sulfide followed by oxidation back to sulindac. To test this we examined the protective effect of sulindac in hypoxia re-oxygenation in both cardiac myocytes in culture and using a Langendorff model of myocardial ischemia. Using this model of myocardial ischemia we showed that pre-incubation of hearts with sulindac, or the S and R epimers of sulindac resulted in protection against cell death. We present several lines of evidence that the protective effect of sulindac is not dependent on the Msr enzyme system nor does it involve the well established role of sulindac as a Cyclooxygenase (COX) inhibitor. Numerous signaling pathways have been implicated in myocardial protective mechanisms, many of which require fluctuations in ROS levels as initiators or mediators.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Two major troponin I (TnI) genes, fetal TnI (ssTnI) and adult TnI (cTnI), are expressed in the mammalian heart under the control of a developmentally regulated program. In this study, the up-stream domain (~1,800 bp) of mouse fetal TnI gene has been cloned and characterized. There is a high homology of this region among mouse, rat and human. Transfection assays indicated that conserved GA-rich sequences, CREB and a CCAAT box within the first 300 bp upstream of the transcription start site were critical for the gene expression. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays revealed binding proteins to CREB site in nuclear extracts from myocardial cells. Thyroid hormone (T3) caused a significant inhibitory effect on ssTnI expression in myocardial cells. Cardiac troponin I (cTnI) mutations have been linked to the development of restrictive cardiomyopathy (RCM) in human patients. We modeled one mutation in human cTnI Cv terminus, arginine1 92 histidine (R192H) by cardiac specific expression of the mutated protein (cTnI193His in mouse sequence) in transgenic mice. The main functional alteration detected in cTnI193His mice by ultrasound cardiac imaging examinations was impaired cardiac relaxation manifested by a decreased left ventricular end diastolic dimension (LVEDD) and an increased end diastolic dimension in both atria. Echocardiography revealed a series of changes on the transgenic mice including a reversed E-to-A ratio, increased deceleration time, and prolonged isovolumetric relaxation time. At the age of 12 months, cardiac output in cTnI193His mice was significantly declined, and some transgenic mice showed congestive heart failure. The negative impact of cTnI193His on ventricular contraction and relaxation was further demonstrated in isolated mouse working heart preparations.