Diseases

Model
Digital Document
Publisher
Florida Atlantic University
Description
Cone snails are carnivorous marine mollusks, utilizing their neuropeptide-rich venom for prey capture. The venom of Conus brunneus, a wide-spread Eastern Pacific vermivore, has not been extensively studied. In the current work, peptides from the dissected venom were characterized and tested using preliminary bioassays. Six peptides (A-F) were isolated and tested. Three peptide identities were determined by comparison with previously reported data: bru9a (A), bru3a (F), and an a-conotoxin (E). Preliminary screening in a stroke-related model of induced glutamate excitotoxicity in primary neuronal cells and PC12 cell cultures indicated potential neuroprotective activity of peptide fractions A, D, and F. Further testing is necessary to determine and verify structure, activity, target, and mechanism of action of the promising peptides from C. brunneus, which may prove effective neuropharmacological agents to treat stroke.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Restrictive cardiomyopathy (RCM) is a heart muscle disease, characterized by diastolic dysfunction. The present dissertation is to understand the mechanisms underlyijng the initiation of diastolic dysfunction and the fast disease progression to early death in a RCM mouse model, the transgenic cTnI193His mouse... These data showed that myocardial ischemia occurred after diastolic dysfunction and before systolic dysfunction which proceeded congestive heart failure. The results demonstrate that myocardial ischemia causing cardiomycete death is a link between the initial diastolic dysfunction and late-stage systolic dysfunction, and accelerates the disease progression to fatal heart failure in the early age.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Though several clinical monitoring ways exist and have been applied to detect cardiac atril fibrillation (A-Fib) and other arrhythmia, these medical interventions and the ensuing clinical treatments are after the fact and costly. Current portable healthcare monitoring systems come in the form of Ambulatory Event Monitors. They are small, battery-operated electrocardiograph devices used to record the heart's rhythm and activity. However, they are not energy-aware ; they are not personalized ; they require long battery life, and ultimately fall short on delivering real-time continuous detection of arrhythmia and specifically progressive development of cardiac A-Fib. The focus of this dissertation is the design of a class of adaptive and efficient energy-aware real-time detection models for monitoring, early real-time detection and reporting of progressive development of cardiac A-Fib.... The design promises to have a greater positive public health impact from predicting A-Fib and providing a viable approach to meeting the energy needs of current and future real-time monitoring, detecting and reporting required in wearable computing healthcare applications that are constrained by scarce energy resources.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The central premise of this dissertation is that the small heat shock protein (sHSP), (Sa(BB-crystallin is essential for lens and retinal pigmented epithelial (RPE) cell function and oxidative stress defense. To date, the mechanism by which it confers protection is not known. We hypothesize that these functions could occur through its ability to protect mitochondrial function in lens and RPE cells. To test this hypothesis, we examined the expression of (Sa(BB-crystallin/sHSP in lens and RPE cells, we observed its localization in the cells, we examined translocation to the mitochondria in these cells upon oxidative stress treatment, we determined its ability to form complexes with and protect cytochrome c (cyt c) against damage, and we observed its ability to preserve mitochondrial function under oxidative stress conditions in lens and RPE cells. In addition to these studies, we examined the effect of mutations of (Sa(BB-crystallin/sHSP on its cellular localization and translocation patterns under oxidative stress, its in vivo and in vitro chaperone activity, and its ability to protect cyt c against oxidation. Our data demonstrated that (Sa(BB-crystallin/sHSP is expressed at high levels in the mitochondria of lens and RPE cells and specifically translocates to the mitochondria under oxidative stress conditions. We demonstrate that (Sa(BB-crystallin/sHSP complexes with cyt c and protects it against oxidative inactivation. Finally, we demonstrate that (Sa(BB-crystallin/sHSP directly protects mitochondria against oxidative inactivation in lens and RPE cells. Since oxidative stress is a key component of lens cataract formation and age-related macular degeneration (AMD), these data provide a new paradigm for understanding the etiology of these diseases.
Model
Digital Document
Publisher
Florida Atlantic University
Description
We report here the development of new and more general synthetic pathways for the preparation of allenyl and alkynyl carbonyls. These highly dense functionalized compounds were utilized as key intermediates for the synthesis of [3.2.1] and [3.3.1] bicyclic framework, the motifs found in many natural products. A convenient method described for the dehydration of ketoesters to generate conjugated and deconjugated alkynyl esters and conjugated allenyl esters. This sequential one-pot method involves the formation of a vinyl triflate monoanion intermediate that leads to the selective formation of alkynes or allenes depending on additives and conditions used. Product outcomes appear to be a function of unique monoand dianion mechanisms which are described. Our design of a Morita-Baylis-Hilman (MBH) reaction to include a fast silyl 1,3- Brook rearrangement has enabled the first ever anion-catalysis. This new reaction makes possible the addition of both aliphatic and aromatic aldehydes to s ilylallenes leading to carbinol allenoates. These new MBH reactions products allow for a fasttracked synthesis of [3.2.1] bisoxa-bicycles which make up the framework of many biologically active natural products including Vitisinol D. The development of cyclic addition of hydrazine nitrogen to unactivated alkynes catalyzed by non-metals is reported. Starting from readily accessible silyl allenyl esters, alkynyl hydrazines are prepared in one step and subsequently undergo unprecedented cyclization reactions in the presence of ammonium and phosphonium catalysts leading to dehydro-azaproline products. These heterocycles were also produced in high enantiomeric excesses using chiral ammonium phase transfer catalysts via a kinetic resolution pathway.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A method for modeling and simulating neural action potential (AP) propagation along the length of an axon containing a number of Ranvier nodes is proposed in this dissertation. A system identification approach is adopted to represent node of Ranvier (NR) response to current pulse stimulus in the form of transfer function representations for NR excitability. Segments of myelinated internodal (IN) and NR regions are cascaded, representing the remaining downstream axon after a site-of-stimulus introduction of an external current pulse. This cascading network is used to simulate "cable" properties and signal propagation along the length of the axon. This work proposes possible solutions to attenuation losses inherited in the classical myelinated cable models and accounts for neuronal AP velocity as well as introducing signal attenuation and transient delays associated with internodal demyelination. This model could aide as a predictive tool for the diagnosis and analysis of axonal signal integrity associated with demyelination pathology. Possible applications could include functional stimulation control methodologies for axon bundles that may exhibit signal fidelity issues associated with demyelination. It is further proposed that this model may serve as an instructive tool for further development and incorporation of other axon dynamic behaviors such as: relative refractory periods of AP generation, NR AP recovery mechanisms and responses to varied current stimulus input.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Sjogren's Syndrome (SS) is characterized by lymphocytic infiltration, destruction and dysfunction of the lacrimal and salivary glands and the presence of serum autoantibodies. Although, approximately 0.5% of the population suffers from SS, there is a female predominance of 9:1 compared with males. Most women with SS are postmenopausal; however, not all women who are post-menopausal develop SS. Therefore, we postulate that a decrease in the circulating levels of hormones creates an environment favorable to the development of SS in a predisposed genetic background. In order to carry out our studies, we used the NOD.B10.H2b mouse model of SS, and ovariectomized (OVX) them as a model for the post-menopausal condition. We removed the lacrimal glands and measured the gene expression and protein levels of several cytokines and chemokines known to be upregulated in patients with SS such as : lL-1B, IL-10, INF-y, TNFa, CCL9 and CXCL13.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Heart disease including ischemic heart disease is the highest contributor to death and morbidity in the western world. The studies presented were conducted to determine possible pathways of protection of the heart against ischemia/reperfusion. We employed adenovirus mediated over-expression of Methionine sulfoxide reductase A (MsrA) in primary neonatal rat cardiac myocytes to determine the effect of this enzyme in protecting against hypoxia/reoxygenation. Cells transfected with MsrA encoding adenovirus and subjected to hypoxia/reoxygenation exhibited a 45% decrease in apoptosis as compared to controls. Likewise total cell death as determined by levels of Lactate Dehydrogenase (LDH) release was dramatically decreased by MsrA overexpression. The initial hypothesis that led to our testing sulindac was based on the fact that the S epimer of sulindac was a substrate for MsrA and that this compound might function as a catalytic anti-oxidant based on a reaction cycle that involved reductio n to sulindac sulfide followed by oxidation back to sulindac. To test this we examined the protective effect of sulindac in hypoxia re-oxygenation in both cardiac myocytes in culture and using a Langendorff model of myocardial ischemia. Using this model of myocardial ischemia we showed that pre-incubation of hearts with sulindac, or the S and R epimers of sulindac resulted in protection against cell death. We present several lines of evidence that the protective effect of sulindac is not dependent on the Msr enzyme system nor does it involve the well established role of sulindac as a Cyclooxygenase (COX) inhibitor. Numerous signaling pathways have been implicated in myocardial protective mechanisms, many of which require fluctuations in ROS levels as initiators or mediators.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Two major troponin I (TnI) genes, fetal TnI (ssTnI) and adult TnI (cTnI), are expressed in the mammalian heart under the control of a developmentally regulated program. In this study, the up-stream domain (~1,800 bp) of mouse fetal TnI gene has been cloned and characterized. There is a high homology of this region among mouse, rat and human. Transfection assays indicated that conserved GA-rich sequences, CREB and a CCAAT box within the first 300 bp upstream of the transcription start site were critical for the gene expression. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays revealed binding proteins to CREB site in nuclear extracts from myocardial cells. Thyroid hormone (T3) caused a significant inhibitory effect on ssTnI expression in myocardial cells. Cardiac troponin I (cTnI) mutations have been linked to the development of restrictive cardiomyopathy (RCM) in human patients. We modeled one mutation in human cTnI Cv terminus, arginine1 92 histidine (R192H) by cardiac specific expression of the mutated protein (cTnI193His in mouse sequence) in transgenic mice. The main functional alteration detected in cTnI193His mice by ultrasound cardiac imaging examinations was impaired cardiac relaxation manifested by a decreased left ventricular end diastolic dimension (LVEDD) and an increased end diastolic dimension in both atria. Echocardiography revealed a series of changes on the transgenic mice including a reversed E-to-A ratio, increased deceleration time, and prolonged isovolumetric relaxation time. At the age of 12 months, cardiac output in cTnI193His mice was significantly declined, and some transgenic mice showed congestive heart failure. The negative impact of cTnI193His on ventricular contraction and relaxation was further demonstrated in isolated mouse working heart preparations.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Upper Respiratory Tract Disease (URTD) is a highly contagious illness, caused by the bacterium Mycoplasma agassazii. URTD has affected the gopher tortoise population in the Abacoa Greenway, and is believed to have a high mortality rate. In this study, 18 samples of tortoise blood were collected from this location. Fifteen of the 18 samples were collected from previously tested individuals. Comparisons between the previously tested tortoises were made. According to this study there is no documented mortality rate with URTD in Abacoa. Results show that four tortoises have continued to test positive for the antibodies for several years, suggesting a chronic state of the disease. Four other tortoises have gone from positive results to negative results indicating that their immune systems' production of antibodies has tapered off, suggesting the ability to recover from the disease.