Saint Lucie River Estuary (Fla.)

Model
Digital Document
Publisher
Florida Atlantic University
Description
Estuarine ecosystems are dynamic habitats, where the convergence of marine and freshwater results in constant fluxes in environmental abiotic parameters. Organisms must balance these variations within their optimal range to minimize physiological costs, often by movement from unsuitable to more suitable areas. Additional disruptions to ecosystem balances, such as anthropogenic hydrologic discharges, further alter environmental conditions and may cause population-wide movement responses of mobile organisms. Responses to anthropogenic and natural fluctuations can differ based on time of year, life history stage, or individual characteristics. These ecologically-balanced dynamics are difficult to model. In this study, I examined variability in estuarine environmental data and common snook (Centropomus undecimalis) movement responses to anthropogenic and natural fluctuations in the environment in a managed waterway. ARIMA time series models were tested as a method of modeling variability in environmental parameters. Monthly variance was well described throughout most of the estuary, especially when the interannual and intra-annual patterns were stable, indicating that these models are a good method for these types of data and could be appropriate for forecasting. Euryhaline sportfish movement responses to high discharge events in a managed waterway were observed with passive acoustic telemetry and did not show large-scale, population-wide consistency. Responses were variable between and within individuals, but individual characteristics appear to have influenced behavior in response to disturbances. Thus, these sportfish populations may be more resilient to this type of disturbance than previously hypothesized. Generalized additive mixed effects models showed that the distribution and movement of individual fishes varied in response to multiple natural and anthropogenic factors, and there was no primary driver. The understanding of the relationships among the distribution and movement of fishes and abiotic and anthropogenic factors can guide management of waterways and provide insight into how changes will affect abiotic factors and communities.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Contamination of recreational waters with fecal waste, indicated by the presence of
enterococci, can have consequences for human and ecosystem health. The difficulty in
determining the extent and origin of fecal pollution in dynamic estuarine systems is
compounded by contributions from sources including septic tanks and agricultural runoff.
This study investigated fecal pollution at five sites with variable hydrological conditions
in the St. Lucie Estuary and Indian River Lagoon. The distribution and occurrence of
enterococci was assessed using traditional cultivation. A human-associated microbial
source tracking assay was validated and applied in these estuaries using qPCR. Results
demonstrated a correlation between enterococci concentrations, rainfall, and salinity. The
human-associated assay was sensitive and specific in the lab; however, human fecal
pollution was not detected in the field even though samples contained high levels of
enterococci. This study highlights the importance of expanding the range of water quality
assessment.