Psychological transport

Model
Digital Document
Publisher
Florida Atlantic University
Description
In recent history, C. jamaicense has been displaced by another native monocot, T. domingensis, predominantly resulting from increased phosphorous enrichment in the Everglades. This study aimed to elucidate these two species responses to low and high [Pi] in terms of allocation, photosynthate partitioning and growth. C. jamaicense growth was independent of Pi, while T. domingensis growth increased with [Pi]. Under high [Pi], allocation to younger T. domingensis shoots occurred, while C. jamaicense shoots retained more [Pi], while low [Pi] resulted in homogeneous allocation patterns for both species. Additionally, Pi deficiencies induced carbohydrate levels in older shoots of T. domingensis, while [Pi] had no effect on photosynthate partitioning patterns in C. jamaicense. ACP activity was induced by Pi deficiency in all T. domingensis shoots and increased with shoot age, while no effect was observed in C. jamaicense. Results indicate these two species differ in allocation strategies when [Pi] is altered.