Model
Digital Document
Publisher
Florida Atlantic University
Description
The purpose of this study was to develop a user-friendly mathematical model for prediction of daily, ground level ozone concentration in Palm Beach County, Florida. The focus of this project was to investigate the correlation between hourly ozone concentrations and pre-existing pollutant levels and meteorological data. An artificial neural network model was applied, involving a backpropagation algorithm and the tangent sigmoid as the transfer function. Surface meteorological data and upper air data such as pressure, temperature, dew point temperature, wind speed and wind direction were included in the model, along with the ozone concentration in the hour previous to the forecast. Based on the model results, the 8-hour average ozone concentration is to be forecasted. This will assist state and local air pollution officials in providing the general public with early notice of an impending air quality problem.
Member of