Cement composites

Model
Digital Document
Publisher
Florida Atlantic University
Description
This study is to compare the performance of recycled aggregate concrete and the impact of up to 50% cement replacement with fly ash on durability. Water content, sieve analysis, standard and modified compaction tests were performed to assess the physical properties of the recycled aggregate concrete. Accelerated aging tests were performed to predict the long term durability of the recycled aggregate concrete. Following Arrhenius modeling and TTS and SIM accelerated aging protocols, a time versus stiffness master curve was created. This allowed the prediction of equivalent age using experimental data and theoretical analysis. To account for environmental exposure, the specimens underwent 24 and 48 hours of wet-dry cycling and subjected. Overall there was an increase in stiffness and strength from the specimens containing fly ash. All tests performed predicted equivalent age beyond the testing period of 144 hrs. and up to 7 years. Specimens containing fly maintained a constant and higher density to environmental exposure.
Model
Digital Document
Publisher
Florida Atlantic University
Description
An experimental study was conducted on the strength and toughness characteristics of concrete made from recycled aggregate, cement and fly ash reinforced with reclaimed high density polyethylene plastic (HDPE) fibers. The objectives of the investigation were: (1) to evaluate the performance of a sustainable concrete containing up to 90% recycled materials; (2) to determine the variation of strength and toughness with a Fiber Factor incorporating length, width and amount of HDPE fibers; (3) to identify the best performing mix design based on tensile strength and toughness and (4) to provide some guidelines for the use of this sustainable composite in Civil Engineering construction. The results showed that the HDPE fiber reinforcements did not improve the compressive strength of the mixture. However, HDPE fibers improved the ductility and toughness which may be beneficial for structural and pavement applications.