Reliability

Model
Digital Document
Publisher
Florida Atlantic University
Description
Pulsing the flow of reactants in proton exchange membrane fuel cells (PEMFC) is a new frontier in the area of fuel cell research. Although power performance losses resulting from water accumulation also referred to as flooding, and power performance recovery resulting from water removal or purging, have been studied and monitored, the nexus between pulsing of reactants and power performance has yet to be established. This study introduces pulsing of reactants as a method of improving power performance. This study investigates how under continuous supply of reactants, pressure increase due to water accumulation, and power performance decay in PEMFCs. Furthermore, this study shows that power performance can be optimized through pulsing of reactants, and it investigates several variables affecting the power production under these conditions. Specifically, changes in frequency, duty cycle, and shifting of reactants as they affect performance are monitored and analyzed. Advanced data acquisition and control software allow multi-input monitoring of thermo-fluid and electrical data, while analog and digital controllers make it possible to implement optimization techniques for both discrete and continuous modes.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Disruption-Tolerant Networks (DTNs) are the networks comprised of a set of wireless nodes, and they experience unstable connectivity and frequent connection disruption because of the limitations of radio range, power, network density, device failure, and noise. DTNs are characterized by their lack of infrastructure, device limitation, and intermittent connectivity. Such characteristics make conventional wireless network routing protocols fail, as they are designed with the assumption the network stays connected. Thus, routing in DTNs becomes a challenging problem, due to the temporal scheduling element in a dynamic topology. One of the solutions is prediction-based, where nodes mobility is estimated with a history of observations. Then, the decision of forwarding messages during data delivery can be made with that predicted information. Current prediction-based routing protocols can be divided into two sub-categories in terms of that whether they are probability related: probabilistic and non-probabilistic. This dissertation focuses on the probabilistic prediction-based (PPB) routing schemes in DTNs. We find that most of these protocols are designed for a specified topology or scenario. So almost every protocol has some drawbacks when applied to a different scenario. Because every scenario has its own particular features, there could hardly exist a universal protocol which can suit all of the DTN scenarios. Based on the above motivation, we investigate and divide the current DTNs scenarios into three categories: Voronoi-based, landmark-based, and random moving DTNs. For each category, we design and implement a corresponding PPB routing protocol for either basic routing or a specified application with considering its unique features.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Reliability is a key system characteristic that is an increasing concern for current systems. Greater reliability is necessary due to the new ways in which services are delivered to the public. Services are used by many industries, including health care, government, telecommunications, tools, and products. We have defined an approach to incorporate reliability along the stages of system development. We first did a survey of existing dependability patterns to evaluate their possible use in this methodology. We have defined a systematic methodology that helps the designer apply reliability in all steps of the development life cycle in the form of patterns. A systematic failure enumeration process to define corresponding countermeasures was proposed as a guideline to define where reliability is needed. We introduced the idea of failure patterns which show how failures manifest and propagate in a system. We also looked at how to combine reliability and security. Finally, we defined an approach to certify the level of reliability of an implemented web service. All these steps lead towards a complete methodology.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Delay tolerant networks (DTNs) are occasionally-connected networks that may suffer from frequent partitions. DTNs provide service despite long end to end delays or infrequent connectivity. One fundamental problem in DTNs is routing messages from their source to their destination. DTNs differ from the Internet in that disconnections are the norm instead of the exception. Representative DTNs include sensor-based networks using scheduled intermittent connectivity, terrestrial wireless networks that cannot ordinarily maintain end-to-end connectivity, satellite networks with moderate delays and periodic connectivity, underwater acoustic networks with moderate delays and frequent interruptions due to environmental factors, and vehicular networks with cyclic but nondeterministic connectivity. The focus of this dissertation is on routing protocols that send messages in DTNs. When no connected path exists between the source and the destination of the message, other nodes may relay the message to the destination. This dissertation covers routing protocols in DTNs with both deterministic and non-deterministic mobility respectively. In DTNs with deterministic and cyclic mobility, we proposed the first routing protocol that is both scalable and delivery guaranteed. In DTNs with non-deterministic mobility, numerous heuristic protocols are proposed to improve the routing performance. However, none of those can provide a theoretical optimization on a particular performance measurement. In this dissertation, two routing protocols for non-deterministic DTNs are proposed, which minimizes delay and maximizes delivery rate on different scenarios respectively. First, in DTNs with non-deterministic and cyclic mobility, an optimal single-copy forwarding protocol which minimizes delay is proposed.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Wireless sensor networks are used in areas that are inaccessible, inhospitable or for continuous monitoring. The main use of such networks is for event detection. Event detection is used to monitor a particular environment for an event such as fire or flooding. Composite event detection is used to break down the detection of the event into the specific conditions that need to be present for the event to occur. Using this method, each sensor node does not need to carry every sensing component necessary to detect the event. Since energy efficiency is important the sensor nodes need to be scheduled so that they consume [sic] consume as little energy as possible to extend the network lifetime. In this thesis, a solution to the sensor Scheduling for Composite Event Detection (SCED) problem will be presented as a way to improve the network lifetime when using composite event detection.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The need to achieve dependability in critical infrastructures has become indispensable for government and commercial enterprises. This need has become more necessary with the proliferation of malicious attacks on critical systems, such as healthcare, aerospace and airline applications. Additionally, due to the widespread use of web services in critical systems, the need to ensure their reliability is paramount. We believe that patterns can be used to achieve dependability. We conducted a survey of fault tolerance, reliability and web service products and patterns to better understand them. One objective of our survey is to evaluate the state of these patterns, and to investigate which standards are being used in products and their tool support. Our survey found that these patterns are insufficient, and many web services products do not use them. In light of this, we wrote some fault tolerance and web services reliability patterns and present an analysis of them.