Model
Digital Document
Publisher
Florida Atlantic University
Description
The objective of the work is to verify the feasibility of converting a large FEA code into a massively parallel FEA code in terms of computational speed and cost. Sequential subroutines in the Research EPIC hydro code, a Lagrangian finite element analysis code for high velocity elastic-plastic impact problems, are individually converted into parallel code using Cray Adaptive Fortran (CRAFT). The performance of massively parallel subroutines running on 32 PEs on Cray-T3D is faster than their sequential counterparts on Cray-YMP. At next stage of the research, Parallel Virtual Machine (PVM) directives is used to develop a PVM version of the EPIC hydro code by connecting the converted parallel subroutines running on multiple PEs of T3D to the sequential part of the code running on single PE. With an incremental increase in the massively parallel subroutines into the PVM EPIC hydro code, the performance with respect to speedup of the code increased accordingly. The results indicate that significant speedup can be achieved in the EPIC hydro code when most or all of the subroutines are massively parallelized.
Member of