Physiological effect

Model
Digital Document
Publisher
Florida Atlantic University
Description
Prostate cancer is one of the leading causes of death in men aged 40-55. Genistein isoflavone (4', 5', 7-trihydroxyisoflavone) is a dietary phytochemical with demonstrated anti-tumor activities in a variety of cancers. Topotecan Hydrochloride (Hycamtin) is an FDA-approved chemotherapy drug, primarily used for secondary treatment of ovarian,cervical and small cell lung cancers. This study was to demonstrate the potential anticancer activities and synergy of topotecan-genistein combination in LNCaP prostate cancer cells. The potential efficacy and mechanism of topotecan/genistein-induced cell death was investigated... Results: The overall data indicated that i) both genistein and topotecan induce cellular death in LNCaP cells, ii) topotecan-genistein combination was significantly more efficacious in reducing LNCaP cell viabiligy compared to either genistein or topotecan alone, iii) in all cases, cell death was primarily through apoptosis, via the activation of the intrinsic pathway, iv) ROS levels were increased and VEGF expression was diminished significantly with the topotecan-genistein combination treatment, v) genetic analysis of topotecan-genistein treatment groups showed changes in genetic expression levels in pathway specific apoptotic genes.... Conclusion: Treatments involving topotecan-genistein combination may prove to be an attractive alternative phytotherapy of adjuvant therapy for prostate cancer.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The reproductive success of leatherback turtles (Dermochelys coriacea) is typically the lowest of the seven sea turtle species. Why this vital rate is decreased has remained unanswered for nearly a century. Recently, detailed postmortem examination of leatherback hatchlings identified muscular pathologies that suggested possible selenium deficiency. High bodily burdens of mercury compounds are associated with selenium depletion. Selenium is a necessary detoxifying nutrient that itself can be toxic at elevated concentrations. Mercury compounds are toxicants with no known biological function. High bodily concentrations of mercury can be detrimental to marine organismal health, reproduction and survival, both directly and indirectly through inducing selenium depletion. The goals of this dissertation are to evaluate several related hypotheses to explain low leatherback nest success. ... Because leatherbacks take in high volumes of prey, high tissue concentrations of mercury and selenium can result. This study provides the first evidence that chemical contaminants may explain low reproductive success in leatherback sea turtles.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Vitamin D insufficiency/deficiency is widespread in asthma, and epidemiological studies point to an association between low serum 25-hydroxyvitamin D level and poor asthma control and increased severity. In humans. Vitamin D is principally derived from sunlight induced cutaneous conversion of 7-dehydrocholesterol to vitamin D and oral supplementation. We sought to determine if established and chronic-persistent adult asthma patients from a South-Florida pulmonary patient population, with abundant sunshine availability and oral vitamin D supplementation exhibit vitamin D insufficiency/deficiency. A trend to vitamin D insufficiency was observed in approximately 65% of both adult asthma patients and apparently healthy (non-asthmatic) volunteers. . The transcription factors required for Th9 conversion, PU.1 and IRF-4, were down-regulated by vitamin D. The generation of Th9 cells was inhibited equally by vitamin D and dexamethasone when used alone, but the effect was additive when both steroids were used in combination. Our studies using non-specifically stimulated cells were extended by analyzing the effect of vitamin D on allergen specific stimulation. The response of CD4+ T cells obtained from the blood of house dust mite positive asthmatics was studied. House dust mite allergen elicited a classical Th2 phenotype response (IL-4, IL-5, IL-9, and IL-13 cytokine profile) and vitamin D effectively inhibited those key Th2 cytokines. We conclude that vitamin D appears to be of significant clinical benefit in our cohort of patients, i.e., established chronic adult human asthma, by down-regulating key immune cells including Th9, Th17, and Th2 involved in this disorder.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Stroke is the third leading cause of mortality in the United States, and so far, no clinical interventions have been proved truly effective in stroke treatment. Stroke my result in hypoxia, glutamate release and oxidative stress, etc. The purpose of this dissertation study is to evaluate the neuroprotective effects of four drugs (taurine, G-CSF sulindac and DETC-MeSO) on PC12 cell line or primary cortical neuronal cell culture, and to understand the protective mechanisms underlying in three stroke-related models : hypoxia, excessive glutamtate and oxidative stress. In the first part of this dissertation, we studied the neuroprotection of taurine against oxidative stress induced by H2O2 in PC12 cells. Our results show that extracellular taurine exerts a neuroprotective function by restoring the expression of Bcl-2 and downregulation of the three Endoplasmic Reticulum (ER) stress markers : GRP78, Bim and CHOP/GADD153, suggesting that ER stress can be provoked by oxidative stress and can be suppressed by taurine. In the second part, glutamate excitotoxicity-induced ER stress was studied with dose and time as variables in primary cortical neurons. The results demonstrate that glutamate excitotoxicity leads to the activation of three ER stress pathways (PERK, ATF6 and IRE1) by initiating PERK first, ATF6 second and IRE1 pathway last. The third part of this dissertation studied the robust and beneficial protection of taurine in cortical neurons under hypoxia/reoxygenation or glutamate toxicity condition. We found that taurine suppresses the up-regulation of GRP778, Bim, caspase-12 and GADD153/CHOP induced by excessive glutamate or hypoxia/reoxygenation, suggesting that taurine may exert a protective function against hypoxia/regeneration by reducing the ER stress.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Molecular chaperones guide peptide fold conformation throughout the lifetime of the peptide. One network of chaperone proteins involved in this activity, Heat shock protein 70s (Hsp70s), are well characterized at restoring peptide fold, utilizing J-domain containing protein chaperone cofactors to activate Hsp70 activity. DnaJ (Hsp40) homolog, subfamily C, member 25 (DNAJC25) is a class III transmembrane J-domain containing protein that to date is underrepresented in the literature. Recently, Hejtmancik et al. 2012. (unpublished data) have revealed that missense mutation to DNACJ25 at Pro90Leu (P90L) is strongly correlated with inherited Closed-Angle Glaucoma. Inherited mutations are well characterized for Open-Angle Glaucoma, however, prior to this finding, were unknown for Closed-Angle Glaucoma. In this report, analysis of the in vitro chaperone activity of DNAJC25 w+ and P90L is assessed utilizing an Hsp70 mediated Glucose-6-Phosphate Dehydrogenase refolding system, SWISS-MODEL predictions are performed for the J-domain structure of DNAJC25 w+ and P90L with consequent analysis of DNAJC25 Pro90 conservation relative to other type I, II, and III J-domain containing proteins. DNAJC25 P90L demonstrated decreased chaperone activity in vitro compared to w+ DNAJC25.
Model
Digital Document
Publisher
Florida Atlantic University
Description
A rat model of novelty-seeking phenotype predicts vulnerability to nicotine relapse where locomotor reactivity to novelty is used to rank high (HR) versus low (LR) responders. This dissertation examines the neuropeptidergic and structural substrates of the expression of locomotor sensitization to a low dose nicotine challenge and associated social anxiety-like behavior following chronic intermittent nicotine exposure during adolescence in the LRHR phenotype. Data show the long-lasting nature of behavioral sensitization to nicotine and abstinence-related social anxiety-like behavior in nicotine pre-trained HRs compared to saline pre-trained controls. Moreover, this behavior is accompanied by an imbalance between the brain antistress/antianxiety, i.e., neuropeptide Y (NPY), and stress, i.e., corticotrophin releasing factor (CRF) systems in the amygdala. Moreover, a deficit in NPY signaling marked with decreased NPY and increased NPY Y2 receptor (Y2R) mRNA levels is observed in the hip pocampus, along with mossy fiber reorganization in nicotine pre-trained HRs. Furthermore, a Y2R antagonist administered 1 wk of abstinence reverses these behavioral, molecular and morphological effects in nicotine-exposed HRs. Additionally, the role of amygdalar synaptic plasticity in longlasting social withdrawal is also investigated by assessing brain-derived neurotrophic factor (BDNF) and spinophilin mRNA levels in HRs following a behaviorally-sensitizing nicotine regimen. A persistent increase in BDNF and spinophilin mRNA levels in the basolateral amygdala (BLA) is observed in nicotine pre-trained HRs even across a long (3-wk) abstinence spanning into young adulthood. This strongly suggests BDNFmediated long-lasting neuroplasticity within the BLA that may regulate abstinence-related negative affect in HRs.
Model
Digital Document
Publisher
Florida Atlantic University
Description
This study investigated potential apoptotic and anti-proliferative effects of the phytochemicals, genistein and anthocyanin extract, as single and combined treatments in MCF-7 human breast cancer cells. Cells were exposed to single and combined treatments with the phytochemiclas for 48 and 72 hours. Cell viability was assessed using the MTT bioassay. Apoptosis induction was assessed using acridine orange ethidium bromide and rhodamine 123 ethidium bromide fluorescence assays. Both singe and combination treatments induced dose- and time-dependent apoptotic cell death in MCF-7 cells. The percentage of apoptosis was higher in combination treatments than single treatments with either phytochemical, although the difference was not statistically significant. The combination of genistein and anthocyanin extract peaked in efficacy at 48 hours of treatment, to exhibit significantly greater (P<. O5) dose- and time-dependent cell cytotoxicity than single treatments. This study reveals potential chemopreventive implications for the complementary effects of genistein and anthocyanin extract.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Hypoxia and sulfide exposure, increased using glucose, are considered major environmental stressors in seagrass communities. Quantum efficiency, total soluble protein and catalase activity were quantified to evaluate the applicability of each of these bioindicators to detect environmental stress in three tropical seagrass species, Thalassia testudinum (Banks ex Kèoenig), Halodule wrightii (Ascherson) and Syringodium filiforme (Kuetz). Hypoxia + sulfide treatments significantly decreased the quantum efficiency of all three species, but showed no response in protein and catalase activity. Although no treatment effect was found, catalase activity was enhanced in T. testudinum leaves and H. wrightii roots relative to other tissues, while S. filiforme showed no location-specific catalase activity. These results indicate that quantum efficiency is a more sensitive indicator than protein and catalase activity to hypoxia and sulfide stress in seagrasses.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Taurine is the second most abundant amino acid in the CNS after glutamate and its functions have been found largely related to intracellular calcium ([Ca2+]i) modulation, osmoregulation, membrane stabilization, reproduction and immunity. The action of taurine has also been implicated in neurotransmission and neuromodulation though its specific sites of action are not fully understood. Isolated retinal neurons from the larval tiger salamanders (Ambystoma tigrinum) were used as a model to study the neuromodulatory role of taurine in the CNS and to gain insights into its potential sites of action. A combination of techniques was used, including whole-cell patch clamp recording to study taurine's regulation of voltage-gated potassium (K+) and Ca2+ channels and Fluo-4AM Ca2+-imaging to study taurine's regulation of glutamate-induced [Ca2+] I,. Taurine was shown to suppress of glutamate-induced [Ca2+] l, in a dose dependent manner. This suppression was mostly sensitive to the glycine rece ptor antagonist Strychnine but insensitive to any GABA receptor antagonist. The remaining strychnine-insensitive effect was inhibited with the protein kinase A (PKA) inhibitor, PKI, suggesting that there was an additional metabotropic pathway. Moreover, using the protein kinase C (PKC) inhibitor, GF109203X, there was an enhancement in strychnine-insensitive taurine's regulation. Taurine inhibits voltage-gated Ca2+ channels in the retinal neurons and has a dual effect on voltage-gated K+ channels. Taurine causes an increase in K+ current amplitude which is further enhanced with PKI and blocked with GF109203X, suggesting that it is through a PKC-dependent pathway negatively controlled by PKA-dependent pathway.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The enzyme Methionine sulfoxide reductase A (MsrA) repairs oxidized proteins, and may act as a scavenger of reactive oxygen species (ROS), making it a potential therapeutic target for age-related neurodegenerative diseases. The anoxia-tolerant turtle offers a unique model to observe the effects of oxidative stress on a system that maintains neuronal function following anoxia and reoxygenation, and that ages without senescence. MsrA is present in both the mitochondria and cytosol, with protein levels increasing respectively 3- and 4-fold over 4 hours of anoxia, and remaining 2-fold higher than basal upon reoxygenation. MsrA was knocked down in neuronally-enriched cell cultures via RNAi transfection. Propidium iodide staining showed no significant cell death during anoxia, but this increased 7-fold upon reoxygenation, suggesting a role for MsrA in ROS suppression during reperfusion. This is the first report in any system of MsrA transcript and protein levels being regulated by oxygen levels.