Materials

Model
Digital Document
Publisher
Florida Atlantic University
Description
Molecular architecture has been used to develop new materials with our knowledge of Bis(arylimino)isoindoline (BAII). Ni(BAII)2,\ Ni(NBAII)2 and Cu(NBAII)(OAc) complexes were prepared and studied using their Crystal packing diagrams and data in order to evaluate $\pi$-overlapping. It is believed that $\pi$-overlapping will occur in complexes with mono BAII substituted complexes and not di-substituted. The first steps have been made in the development of a polymeric BAII complex with the production of an oligomeric BAII (GBAII). The GBAII complex was analysis using a molecular device approach with the use of NMR instrumentation.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The study addresses the coating selection for a proposed placement of a hydroturbine into the Gulf Stream. The turbine will generate energy in a similar manner to a wind turbine. The effects of biofouling and corrosion in the current project are assessed. A review of different types of traditional paint coatings is given, as well as the option for a copper-nickel alloy. Testing that should be undertaken for the coating selection is described in detail. Coating considerations are offered and discussed. Design considerations and modifications are also offered.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Simulations have been carried out to validate a hydrokinetic energy system non-dimensional scaling procedure. The requirements for a testing facility intended to test such devices will be determined from the results of the simulations. There are 6 simulations containing 3 prototype systems and 2 possible model facility depths to give a range of results. The first 4 tests are conducted using a varying current profile, while the last 2 tests use a constant current profile of 1.6 m/s. The 3 prototype systems include a: 6 m spherical buoy, a 12 m spherical buoy and a turbine component system. The mooring line used for the simulations is a 6x19 Wire Rope Wire Core of diameter 100 mm and length 1000 m. The simulations are implemented using Orcaflex to obtain the dynamic behavior of the prototype and scaled system.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The study presents a reliability-based fatigue life prediction model for the ocean current turbine rotor blades. The numerically simulated bending moment ranges based on the measured current velocities off the Southeast coast line of Florida over a one month period are used to reflect the short-term distribution of the bending moment ranges for an idealized marine current turbine rotor blade. The 2-parameter Weibull distribution is used to fit the short-term distribution and then used to obtain the long-term distribution over the design life. The long-term distribution is then used to determine the number of cycles for any given bending moment range. The published laboratory test data in the form of an ε-N curve is used in conjunction with the long-term distribution of the bending moment ranges in the prediction of the fatigue failure of the rotor blade using Miner's rule. The first-order reliability method is used in order to determine the reliability index for a given section modulus over a given design life. The results of reliability analysis are then used to calibrate the partial safety factors for load and resistance.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The success of harnessing energy from ocean current will require a reliable structural design of turbine blade that is used for energy extraction. In this study we are particularly focusing on the fatigue life of a 3m length ocean current turbine blade. The blade consists of sandwich construction having polymeric foam as core, and carbon/epoxy as face sheet. Repetitive loads (Fatigue) on the blade have been formulated from the randomness of the ocean current associated with turbulence and also from velocity shear. These varying forces will cause a cyclic variation of bending and shear stresses subjecting to the blade to fatigue. Rainflow Counting algorithm has been used to count the number of cycles within a specific mean and amplitude that will act on the blade from random loading data. Finite Element code ANSYS has been used to develop an S-N diagram with a frequency of 1 Hz and loading ratio 0.1 Number of specific load cycles from Rainflow Counting in conjunction with S-N diagram from ANSYS has been utilized to calculate fatigue damage up to 30 years by Palmgren-Miner's linear hypothesis.