Genetic transcription

Model
Digital Document
Publisher
Florida Atlantic University
Description
The Bel family of genes are fundamental to the apoptotic mechanism. Bcl-x a
member of this family, is alternatively spliced to create two main isoforms a long
(Bcl-xL) and a short (Bcl-xS) variant. The long form exhibits anti-apoptotic activity,
while the short form favors apoptosis. The proper balance of expression of these two
isoforms is crucial for several developmental processes such as thymic selection and
neural reshaping. A number of cancer types have been shown to over-express the long
form, thereby granting them some protection from apoptosis. To study the
transcriptional and post-transcriptional mechanisms regulating gene expression, the
Bcl-x gene has been utilized. A complex mini-gene construct has been create in order
to monitor the effects that promoter sequences, 5'UTR and 3'UTR's have on mRNA
splicing, RNA export, stability and translation. Abundant evidence exists indicating
that RNA processing events such as transcription, splicing and export are coupled, yet
the mechanisms and factors involved in regulating these processes are poorly
understood. The mini-gene is identical to the endogenous gene with the exception of a deletion to the 50Kb intron and the addition of a tag to differentiate the mini-gene
product from the endogenous mRNA and protein. This novel system allows for the
study of transcriptional and post-transcriptional mechanisms regulating gene
expression from RNA biogenesis on to the protein level.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The ubiquitin ligase Highwire is responsible for cell-autonomously promoting
synapse formation in the Drosophila Giant Fiber system. highwire mutants show defects
in synaptic function and extra branching at the axon terminal, corresponding to transient
branching that occur in the course of giant synapse formation during metamorphosis. The
MAP kinase pathway, including Wallenda and JNK/Basket, plus the transcription factor
Jun, act to suppress synaptic function and axon pruning in a dosage sensitive manner,
suggesting different molecular mechanisms downstream of the MAP kinase pathway
govern function and pruning. A novel role for Highwire is revealed, regulating the giant
fiber axon’s ability to respond to external cues regulated by Fos. When expression of the
transcription factor Fos is disrupted in the post-synaptic TTMn or surrounding midline
glia of highwire mutants, the giant fiber axons show a marked increase in axon overgrowth and midline crossing. However, synaptic function is rescued by the cell nonautonomous
manipulation of Fos, indicating distinct mechanisms downstream of Highwire regulating synaptic function and axon morphology.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The classic guidance molecules, Netrin and its receptor Frazzled (Fra), dictate the strength of
synaptic connections in the giant fiber system (GFS) of Drosophila melanogaster by regulating
gap junction localization in the pre-synaptic terminal. In Netrin mutant animals the synaptic
coupling between a giant interneuron and the jump motor neuron was weakened. Dye-coupling
between these two neurons was severely compromised or absent. These mutants exhibited
anatomically and physiologically defective synapses between the giant fiber (GF) and
tergotrochanteral motor neuron (TTMn). In cases where Netrin mutants displayed apparently
normal synaptic anatomy, half of the specimens exhibited physiologically defective synapses.
Dye-coupling between the giant fiber and the motor neuron was reduced or eliminated,
suggesting that gap junctions were disrupted in the Netrin mutants. When we examined the gap
junctions with antibodies to Shaking-B Innexin (ShakB), they were significantly decreased or
absent in the pre-synaptic terminal of the mutant GF. This data is the first to show that Netrin and
Frazzled regulate placement of gap junctions pre-synaptically at a central synapse. In the Drosophila Giant Fiber System, we demonstrate a mechanism that ensures the monoinnervation of two homologous motor neurons by two homologous interneurons. In a scenario where both interneurons could synapse with both motor neuron targets, each interneuron exclusively synapsed with only one target and the circuit functions at normal physiological levels. This innervation pattern depended on the ratio of netrin-to-frazzled expression. When Netrin was over expressed in the system, shifting the ratio in favor of Netrin,
both interneurons synapsed with both target motor neurons and physiological function was reduced. This resulted in the polyinnervationof a single target. In contrast, when Frazzled was over expressed in the system, one interneuron innervated both targets and excluded the remaining interneuron from making any synaptic contact. This resulted in a single interneuron mono-innervating both motor neurons and physiological function was mutant. The orphaned interneuron made no synaptic contact with either motor neuron target. Physiological function was only normal when the Netrin-Frazzled ratio was at endogenous levels and each GF monoinnervated one motor neuron. When we examined the gap junctions at this synapse in experimental animals, there was a significant reduction of gap junction hemichannels in the presynaptic terminal of axons that deviated from normal innervation patterns. While the synapse dyecoupled, the reduction in gap junction hemichannels reduced function in the circuit.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Metastatic cancers are problematic because they spread throughout the body. A crucial step in cancer metastasis is the separation of the cancer cells from their surrounding normal cells. This occurs due to suppression or destruction of cell adhesion molecules such as E-cadherin, occludin, and various claudins. The Snail and Slug transcription factors play a direct role in suppressing these cell adhesion molecules through their SNAG repression domain. We explored the possibility of developing an ELISA diagnostics capable of detecting soluble E-cadherin, occludin, and claudin fragments in the serum of cancer patients. Using several bioinformatics tools, unique extracellular antigenic sequences were identified on claudins-1, 4, 16, occludin, and E-cadherin. These sequences were cloned as GST fusion proteins, expressed, and purified in large quantities to raise antibodies. In parallel, expression profiling of metastatic cancer cell lines was carried out to derive a correlation between Snail-Slug expression and suppression of cell adhesion molecules.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The zinc finger associated domain (ZAD) family of transcription factors from Drosophila melanogaster is not well described in the literature, in part because it is very difficult to study by traditional mutagenesis screens. Bioinformatic studies indicate this is due to overlapping functions remaining after a recent evolutionary divergence. I set out to use in vitro-binding techniques to identify the characteristics of the ZAD family and test this theory. I have constructed glutathione S-transferase (GST)-ZAD domain chimeric proteins for use in pull down protein binding assays,and GST-Zinc finger (ZnF) array domain chimera for electrophoretic mobility shift assays (EMSA). Protein binding assays indicated two putative conserved interactors, similar to the analogous KRAB system in mammals. ... Competitive bindings were carried out to show a specificity of binding conferred by the identified conserved positions. While the consensus binding sites show relatively few similarities, the predicted target genes identified by the consensus binding sites show significant overlap. The nature of this overlap conforms to the known characteristics of the ZAD family but points to a more positive selection to maintain conservation of function.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The assembly and maintenance of central synapses is a complex process, requiring myriad genes and their products. Highwire is a large gene containing a RING domain, characteristic of ubiquitin E3 ligases. Highwire has been shown to restrain axon growth and control synaptogenesis at a peripheral synapse. Here I examine the roles of Highwire at a central synapse in the adult Drosophila Giant Fiber System (GFS). Highwire is indeed necessary for proper axonal growth as well as synaptic transmission in the GFS. Differences arise between the central synapse and the neuromuscular junction (NMJ), where highwire was initially characterized : expresion from the postsynaptic cell can rescue highwire synaptic defects, which is not seen at the NMJ. In addition, a MAP kinase signaling pathway regulated by highwire at the NMJ has differing roles at a central synapse. Wallenda MAPK can rescue not only the highwire anatomical phenotype but also the defects seen in transmission. Another distinction is seen here : loss of function basket and Dfos enhance the highwire anatomical phenotype while expression of dominant negative basket and Dfos suppress the highwire phenotype. As a result we have compared the signaling pathway in flies and worms and found that the NMJ in the two organisms use a parallel pathway while the central synapse uses a distinct pathway.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Transcriptional regulation by the family of SNAG (Snail/Gfi-1) zinc fingers has been shown to play a role in various developmental states and diseases. These transcriptional repressors have function in both DNA- and protein-binding, allowing for multiple interactions by a single family member. This work aims to characterize the SNAG members Slug, Smuc, Snail, Scratch, Gfi-1, Gfi-1B, and IA-1 in terms of both DNA-protein and protein-protein interactions. The specific DNA sequences to which the zinc finger regions bind were determined for each member, and a general consensus of TGCACCTGTCCGA, was developed for four of the members. Via these studies, we also reveal thebinding affinities of E-box (CANNTG) sequences to the members, since this core is found for multiple members' binding sites. Additionally, protein-protein interactions of SNAG members to other biological molecules were investigated. The Slug domain and Scratch domain have unknown function, yet through yeast two-hybrid screening, we were able to determine protein interaction partners for them as well as for other full length SNAG members. These protein-interacting partners have suggested function as corepressors during transcriptional repression. The comprehensive information determined from these studies allow for a better understanding of the functional relationship between SNAG-ZFPs and other genes. The collected data not only creates a new profile for each member investigated, but it also allows for further studies to be initiated from the results.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Mitochondrial disorders resulting from defects in oxidative phosphorylation are the most common form of inherited metabolic disease. Mutations in the human mitochondrial translation elongation factor GFM1 have recently been shown to cause the lethal pediatric disorder Combined Oxidative Phosphorylation Deficiency Syndrome (COXPD1). Children harboring mutations in GFM1 exhibit severe developmental, metabolic and neurological abnormalities. This work describes the identification and extensive characterization of the first known mutations in iconoclast (ico), the Drosophila orthologue of GFM1. Expression of human GFM1 can rescue ico null mutants, demonstrating functional conservation between the human and fly proteins. While point mutations in ico result in developmental defects and death during embryogenesis, animals null for ico survive until the second or third instar larval stage. These results indicate that in addition to loss-of-function consequences, point mutations in ico appear to produce toxic proteins with antimorphic or neomorphic effects. Consistent with this hypothesis, transgenic expression of a mutant ICO protein is lethal when expressed during development and inhibits growth when expressed in wing discs. In addition, animals with a single copy of an ico point mutation are more sensitive to acute hyperthermic or hypoxic stress. Removal of the positively-charged tail of the protein abolishes the toxic effects of mutant ICO, demonstrating that this domain is necessary for the harmful gain-of-function phenotypes observed in ico point mutants.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Transcriptional regulation of genes is vital to cell success making it an important aspect of research. Transcriptional regulation can occur in many ways; transcription factors bind to the promoter region and block transcription, disrupt an activator protein, or interact with histones to lead to higher order chromatin. Plant HomeoDomain can recognize and bind to different methylation states of histone tails. PHD proteins use other functional regions to carry out functions. Two associated domains having DNA-binding capacity were characterized in this study; the ARID domains of JARID1A and JARID1C and the DDT domains of BAZ1A, BAZ1B and BAZ2A. These genes are important because of their roles in various diseases such as cancer. The consensus sequences for BAZ1A-DDT is GGACGGRnnGG, GnGAGRGCRnnGGnG, RAGGGGGRnG and CRYCGGT. Consensus sequences for BAZ1B-DDT were CGnCCAnCTTnTGGG and YGCCCCTCCCCnR. Consensus sequences for BAZ2A-DDT were TACnnAGCnY and CnnCCRGCnRTGnYY. Consensus sequence for JARID1A-ARID was GnYnGCGYRCYnCnG. Consensus sequences for JARID1C-ARID was RGGRGCCRGGY.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Longitudinals lacking gene (LOLA) is a transcription factor that is involved in a variety of axon guidance decisions in Drosophila melanogaster nervous system. Besides having a role as an epigenetic silencer and in the programmed cell death in Drosophila's ovary, this gene is also an example of complex transcription unit. LOLA is a transcription repressor and can generate 17 DNA - binding isoforms, through alternative splicing, each containing distinct zinc-finger proteins. This unique DNAbinding binding sequence to which LOLA-ZFP binds has been determined for four of the lola isoforms F, J, P and K. Also, bioinformatics' tool approach has been taken to identify the target genes that are regulated by these four LOLA splice variants. Future work will be done for the five other LOLA isoforms to categorize their putative DNA-binding sequences and subsequently their protein interactions.