Model
Digital Document
Publisher
Florida Atlantic University
Description
Research on Multiple Object Tracking (MOT) has typically involved 2D displays where
stimuli move in a single depth plane. However, under natural conditions, objects move in 3D
which adds complexity to tracking. According to the spatial interference model, tracked
objects have an inhibitory surround that when crossed causes tracking errors. How do
these inhibitory fields translate to 3D space? Does multiple object tracking operate on a
2D planar projection, or is it in fact 3D? To investigate this, we used a fully immersive
virtual-reality environment where participants were required to track 1 to 4 moving
objects. We compared performance to a condition where participants viewed the same
stimuli on a computer screen with monocular depth cues. Results suggest that participants
were more accurate in the VR condition than the computer screen condition. This
demonstrates interference is negligent when the objects are spatially distant, yet
proximate within the 2D projection.
stimuli move in a single depth plane. However, under natural conditions, objects move in 3D
which adds complexity to tracking. According to the spatial interference model, tracked
objects have an inhibitory surround that when crossed causes tracking errors. How do
these inhibitory fields translate to 3D space? Does multiple object tracking operate on a
2D planar projection, or is it in fact 3D? To investigate this, we used a fully immersive
virtual-reality environment where participants were required to track 1 to 4 moving
objects. We compared performance to a condition where participants viewed the same
stimuli on a computer screen with monocular depth cues. Results suggest that participants
were more accurate in the VR condition than the computer screen condition. This
demonstrates interference is negligent when the objects are spatially distant, yet
proximate within the 2D projection.
Member of