Model
Digital Document
Publisher
Florida Atlantic University
Description
The intercalation of anions into carbon fiber from organic electrolytes containing lithium salts was studied. The reversible intercalation of anions into carbon could lead to the possible substitution of conventional metal oxide cathode materials in lithium-ion cells. EWC300 was selected as the most suitable carbon fiber material based on data from preliminary tests. Experiments were performed with LiClO4 in EC/DMC and LiPF6 in EC/DMC electrolytes. Slow scan cyclic voltammetry (0.1 mV/s) and galvanostatic charge/discharge experiments at various C rates were used. Intercalation of PF6- occurred by staging and was highly dependent on the current density. High current density (20 mA/g) was necessary to reach potentials over 5 V vs Li to achieve intercalation capacities over 80 mAh/g. Powder x-ray diffraction revealed that carbon fibers became less crystalline after anions were intercalated into their structure. Scanning electron microscopy showed longitudinal cracking on the carbon fibers after 120 cycles indicating dimensional instability.
Member of