Perceptual motor processes

Model
Digital Document
Publisher
Florida Atlantic University
Description
Eye fixations of the face are normally directed towards either the eyes or the
mouth, however the proportions of gaze to either of these regions are dependent on
context. Previous studies of gaze behavior demonstrate a tendency to stare into a target’s
eyes, however no studies investigate the differences between when participants believe
they are engaging in a live interaction compared to knowingly watching a pre-recorded
video, a distinction that may contribute to studies of memory encoding. This study
examined differences in fixation behavior for when participants falsely believed they
were engaging in a real-time interaction over the internet (“Real-time stimulus”)
compared to when they knew they were watching a pre-recorded video (“Pre-recorded
stimulus”). Results indicated that participants fixated significantly longer towards the
eyes for the pre-recorded stimulus than for the real-time stimulus, suggesting that
previous studies which utilize pre-recorded videos may lack ecological validity.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Visual motion can be conveyed by a variety of information sources in the environment, and those types of information may be detected at various levels by different motion-perceiving mechanisms in the visual system. High-level visual information has been demonstrated to have 3rd order, or salience-based properties (Lu & Sperling, 1995). The perceptual system they describe that computes motion from these types of information shares several characteristics with Hock and colleagues' counterchange detection system, notably flexibility with respect to types of input from which motion can be computed, which comes at the cost of diminished processing speed. The mechanism of counterchange detection is well suited to processing visual features often present in environmental scenes, e.g., objects and surfaces, and may be a mechanism of 3rd order motion. Consistent with reported properties of 3rd order motion, the current experiments tested count erchange-, luminance-, and color-based motion stimuli with 3 objectives: to identify whether the 3 systems framework generalizes beyond the stimulus type with which it was defined, to test whether counterchange shares similarities with the 3rd order system with respect to dichoptic integration, and perception of isoluminant color-based motion, and to test subjectively objectless sources of motion-defining information (spreading luminance and hue) to see if they display properties of the 1st order system derived from sine wave gratings. Results indicate that counterchange-based stimuli displayed predicted properties of dichoptic integration, and perception at isoluminance, but putative 1st order (spreading) stimuli also displayed these properties. This may suggest that object-like surfaces, even when not directly the source of motion information, can contribute to computation of motion. Further, these results highlight the difficulty of generalizing from one theoretical framework to another, and specifically, of psychophysically testing high-level information while isolating contributions from low level information upon which high level visual stimuli are built.
Model
Digital Document
Publisher
Florida Atlantic University
Description
Prior research has explored the counterchange model of motion detection in terms of counterchanging information that originates in the stimulus foreground (or objects). These experiments explore counterchange apparent motion with regard to a new apparent motion stimulus where the necessary counterchanging information required for apparent motion is provided by altering the luminance of the background. It was found that apparent motion produced by background-counterchange requires longer frame durations and lower levels of average stimulus contrast compared to foreground-counterchange. Furthermore, inter-object distance does not influence apparent motion produced by background-counterchange to the degree it influences apparent motion produced by foreground-counterchange.
Model
Digital Document
Publisher
Florida Atlantic University
Description
The perception of visual motion is an integral aspect of many organisms' engagement with the world. In this dissertation, a theory for the perception of visual object-motion is developed. Object-motion perception is distinguished from objectless-motion perception both experimentally and theoretically. A continuoustime dynamical neural model is developed in order to generalize the ndings and provide a theoretical framework for continued re nement of a theory for object-motion
perception. Theoretical implications as well as testable predictions of the model are discussed.